Количество ошибок ssm что это

25.08.2012, 03:11. Показов 624488. Ответов 2


Студворк — интернет-сервис помощи студентам

В первую очередь хочу сказать спасибо Charles Kludge и nonym4uk за помощь в написании этой статьи.

Итак, S.M.A.R.T. (от англ. self-monitoring, analysis and reporting technology — технология самоконтроля, анализа и отчётности) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя.
Много пользователей знает что такое S.M.A.R.T., немного меньше даже знают как его получить… Но когда встает вопрос проанализировать полученную таблицу, обычно дело стопорится. В этой статье я приведу основные значения и их расшифровку

Для любознательных

SMART производит наблюдение за основными характеристиками накопителя, каждая из которых получает оценку. Характеристики можно разбить на две группы:
параметры, отражающие процесс естественного старения жёсткого диска (число оборотов шпинделя, число премещений головок, количество циклов включения-выключения);
текущие параметры накопителя (высота головок над поверхностью диска, число переназначенных секторов, время поиска дорожки и количество ошибок поиска).

Данные хранятся в шестнадцатеричном виде, называемом «raw value», а потом пересчитываются в «value» — значение, символизирующее надёжность относительно некоторого эталонного значения. Обычно «value» располагается в диапазоне от 0 до 100 (некоторые атрибуты имеют значения от 0 до 200 и от 0 до 253).
Высокая оценка говорит об отсутствии изменений данного параметра или медленном его ухудшении. Низкая говорит о возможном скором сбое.
Значение, меньшее, чем минимальное, при котором производителем гарантируется безотказная работа накопителя, означает выход узла из строя.

Технология SMART позволяет осуществлять:
мониторинг параметров состояния;
сканирование поверхности;
сканирование поверхности с автоматической заменой сомнительных секторов на надёжные.

Следует заметить, что технология SMART позволяет предсказывать выход устройства из строя в результате механических неисправностей, что составляет около 60 % причин, по которым винчестеры выходят из строя.
Предсказать последствия скачка напряжения или повреждения накопителя в результате удара SMART не способна.

Следует отметить, что накопители НЕ МОГУТ сами сообщать о своём состоянии посредством технологии SMART, для этого существуют специальные программы.

Любая программа, показывающая S.M.A.R.T. для каждого атрибута имеет несколько значений, разберемся сначала с ними — ID, Value, Worst, Threshold и RAW. Итак:

ID (Number) — собственно, сам индикатор атрибута. Номера стандартны для значений атрибутов, но например,из-за кривизны перевода один и тот же атрибут может называться по-разному, проще орентироваться по ID, логично?

Value

(Current) — текущее значение атрибута в условных единицах, никому наверное неведомых . В процессе работы винчестера оно может уменьшаться, увеличиваться и оставаться неизменным. По показателю Value нельзя судить о «здоровье» атрибута, не сравнивая его со значением Threshold этого же атрибута. Как правило, чем меньше Value, тем хуже состояние атрибута (изначально все классы значений, кроме RAW, на новом диске имеют максимальное из возможных значение, например 100).

Worst — наихудшее значение, которого достигало значение Value за всю жизнь винчестера. Измеряется тоже в уе. В процессе работы оно может уменьшаться либо оставаться неизменным. По нему тоже нельзя однозначно судить о здоровье атрибута, нужно сравнивать его с Threshold.

Threshold — значение в (сюрприз!!!) уе, которого должен достигнуть Value этого же атрибута, чтобы состояние атрибута было признано критическим. Проще говоря, Threshold — это порог: если Value больше Threshold — атрибут в порядке; если меньше либо равен — с атрибутом проблемы. Именно по такому критерию утилиты, читающие S.M.A.R.T., выдают отчёт о состоянии диска либо отдельного атрибута вроде «Good» или «Bad». При этом они не учитывают, что даже при Value, большем Threshold, диск на самом деле уже может быть умирающим с точки зрения пользователя, а то и вовсе ходячим мертвецом, поэтому при оценке здоровья диска смотреть стоит всё-таки на другой класс атрибута, а именно — RAW. Однако именно значение Value, опустившееся ниже Threshold, может стать легитимным поводом для замены диска по гарантии (для самих гарантийщиков, конечно же) — кто же яснее скажет о здоровье диска, как не он сам, демонстрируя текущее значение атрибута хуже критического порога? Т. е. при значении Value, большем Threshold, сам диск считает, что атрибут здоров, а при меньшем либо равном — что болен. Очевидно, что при Threshold=0 состояние атрибута не будет признано критическим никогда. Threshold — постоянный параметр, зашитый производителем в диске.

RAW (Data) — самый интересный, важный и нужный для оценки показатель. В большинстве случаев он содержит в себе не уе, а реальные значения, выражаемые в различных единицах измерения, напрямую говорящие о текущем состоянии диска. Основываясь именно на этом показателе, формируется значение Value (а вот по какому алгоритму оно формируется — это уже тайна производителя, покрытая мраком). Именно умение читать и анализировать поле RAW даёт возможность объективно оценить состояние винчестера.

Теперь перейдем непосредственно к самим атрибутам.

01 (01) Raw Read Error Rate — Частота ошибок при чтении данных с диска, происхождение которых обусловлено аппаратной частью диска. Для всех дисков Seagate, Samsung (семейства F1 и более новые) и Fujitsu 2,5″ это — число внутренних коррекций данных, проведенных до выдачи в интерфейс, следовательно, на пугающе огромные цифры можно реагировать спокойно.

02 (02) Throughput Performance — Общая производительность диска. Если значение атрибута уменьшается, то велика вероятность, что с диском есть проблемы.

03 (03) Spin-Up Time — Время раскрутки пакета дисков из состояния покоя до рабочей скорости. Растет при износе механики (повышенное трение в подшипнике и т. п.), также может свидетельствовать о некачественном питании (например, просадке напряжения при старте диска).

04 (04) Start/Stop Count — Полное число циклов запуск-остановка шпинделя. У дисков некоторых производителей (например, Seagate) — счётчик включения режима энергосбережения. В поле raw value хранится общее количество запусков/остановок диска.

05 (05) Reallocated Sectors Count — Число операций переназначения секторов. Когда диск обнаруживает ошибку чтения/записи, он помечает сектор «переназначенным» и переносит данные в специально отведённую резервную область. Вот почему на современных жёстких дисках нельзя увидеть bad-блоки — все они спрятаны в переназначенных секторах. Этот процесс называют remapping, а переназначенный сектор — remap. Чем больше значение, тем хуже состояние поверхности дисков. Поле raw value содержит общее количество переназначенных секторов. Рост значения этого атрибута может свидетельствовать об ухудшении состояния поверхности блинов диска.

06 (06) Read Channel Margin — Запас канала чтения. Назначение этого атрибута не документировано. В современных накопителях не используется.

07 (07) Seek Error Rate — Частота ошибок при позиционировании блока магнитных головок. Чем их больше, тем хуже состояние механики и/или поверхности жёсткого диска. Также на значение параметра может повлиять перегрев и внешние вибрации (например, от соседних дисков в корзине).

08 (08) Seek Time Performance — Средняя производительность операции позиционирования магнитными головками. Если значение атрибута уменьшается (замедление позиционирования), то велика вероятность проблем с механической частью привода головок.

09 (09) Power-On Hours (POH) — Число часов (минут, секунд — в зависимости от производителя), проведённых во включенном состоянии. В качестве порогового значения для него выбирается паспортное время наработки на отказ (MTBF — mean time between failure).

10 (0А) Spin-Up Retry Count — Число повторных попыток раскрутки дисков до рабочей скорости в случае, если первая попытка была неудачной. Если значение атрибута увеличивается, то велика вероятность неполадок с механической частью.

11 (0В) Recalibration Retries — Количество повторов запросов рекалибровки в случае, если первая попытка была неудачной. Если значение атрибута увеличивается, то велика вероятность проблем с механической частью.

12 (0С) Device Power Cycle Count — Количество полных циклов включения-выключения диска.

13 (0D) Soft Read Error Rate — Число ошибок при чтении, по вине программного обеспечения, которые не поддались исправлению. Все ошибки имеют

не механическую

природу и указывают лишь на неправильную размётку/взаимодействие с диском программ или операционной системы.

100(64) Erase/Program Cycles (для SSD) Общее количество циклов стирания/программирования для всей флэш-памяти за всё время ее существования. Твердотельный накопитель имеет ограничение на количество записей в него. Точные значения (ресурс) зависят от установленных микросхем флэш-памяти.
В накопителях Kingston — объём стёртого в гигабайтах.

103(67) Translation Table Rebuild (для SSD) Количество событий, когда внутренние таблицы адресов блоков были повреждены и впоследствии восстановлены. Raw-значение этого атрибута указывает фактическое количество событий.

170(AA) Reserved Block Count (для SSD) Состояние пула резервных блоков. Значение атрибута показывает процент оставшегося пула. Иногда raw-значение содержит фактическое количество использованных резервных блоков.
170 атрибут связан с атрибутом 5, числом использованных резервных блоков.

171(AB) Program Fail Count (для SSD) Число попыток, когда запись во флэш-память не удалась. Raw-значение показывает фактическое количество отказов. Процесс записи технически называется «программирование флэш-памяти» — отсюда и название атрибута. Когда флэш-память изношена, она больше не может быть записана и становится доступной только для чтения.
Значение обычно идентично атрибуту 181.

172(AC) Erase Fail Count (для SSD) Количество сбоев операции стирания на флэш-памяти. Raw-значение показывает фактическое количество отказов. Полный цикл записи флэш-памяти состоит из двух этапов. Сначала необходимо удалить память, а затем данные должны быть записаны («запрограммированы») в память. Когда флэш-память изношена, она больше не может быть записана и становится доступной только для чтения.
Идентичен атрибуту 182.

173(AD) Wear Leveller Worst Case Erase Count (для SSD) Максимальное количество операций стирания, выполняемых для одного блока флэш-памяти.

174(AE) Unexpected Power Loss (для SSD) Число неожиданных отключений питания, когда питание было потеряно до получения команды на отключение диска. На жестком диске срок службы при таких отключениях намного меньше, чем при обычном отключении. На SSD существует риск потери внутренней таблицы состояний при неожиданном завершении работы.

175(AF) Program Fail Count (для SSD) Число попыток, когда запись во флэш-память не удалась. Raw-значение показывает фактическое количество отказов. Процесс записи технически называется «программирование флэш-памяти», отсюда и название атрибута. Когда флэш-память изношена, она больше не может быть записана и становится доступной только для чтения.

176(B0) Erase Fail Count (для SSD) Количество сбоев операции стирания на флэш-памяти. Raw-значение показывает фактическое количество отказов. Полный цикл записи флэш-памяти состоит из двух этапов. Сначала необходимо удалить память, а затем данные должны быть записаны («запрограммированы») в память. Когда флэш-память изношена, она больше не может быть записана и становится доступной только для чтения.

177(B1) Wear Leveling Count (для SSD)
Wear Range Delta В зависимости от производителя, максимальное количество операций стирания, выполняемых для одного блока флэш-памяти[источник не указан 269 дней] или разница между максималоьно изношенными (больше всего раз записанными) и минимально изношенными (записанными наименьшее число раз) блоками[4].

178(B2) Used Reserved Block Count (для SSD) Состояние пула резервных блоков. Значение атрибута показывает процент оставшегося пула. Raw-значение этого атрибута иногда содержит фактическое количество использованных резервных блоков.

179(B3) Used Reserved Block Count (для SSD) Состояние пула резервных блоков. Значение атрибута показывает процент оставшегося пула. Raw-значение этого атрибута иногда содержит фактическое количество использованных резервных блоков.

180(B4) Unused Reserved Block Count (для SSD) Состояние пула резервных блоков. Значение атрибута показывает процент оставшегося пула. Raw-значение этого атрибута иногда содержит фактическое количество неиспользованных резервных блоков.

181(B5) Program Fail Count (для SSD) Число попыток, когда запись во флэш-память не удалась. Raw-значение показывает фактическое количество отказов.

182(B6) Erase Fail Count (для SSD) Количество сбоев операции стирания на флэш-памяти. Raw-значение показывает фактическое количество отказов.

183(B7) SATA Downshifts (для SSD) Указывает, как часто требовалось снизить скорость передачи данных SATA (с 6 Гбит/с до 3 или 1,5 Гбит/с или с 3 Гбит/с до 1,5 Гбит/с) для успешной передачи данных. Если значение атрибута уменьшается, попробуйте заменить кабель SATA.
Суть в том, что винчестер, работающий в режимах SATA 3 Гбит/с или 6 Гбит/с (и что там дальше будет в будущем), по какой-то причине (например, из-за ошибок) может попытаться «договориться» с дисковым контроллером о менее скоростном режиме (например, SATA 1.5 Гбит/с или 3 Гбит/с соответственно). В случае «отказа» контроллера изменять режим диск увеличивает значение атрибута (Western Digital und Samsung).

184 (B8) End-to-End error — Назначение зависит от производителя.
У HP (часть технологии HP SMART IV) увеличивается в случае, когда после передачи данных через кэш-память чётность данных между хостом и жёстким диском не совпадает.
У Kinston это количество ошибок чтения из флэш-памяти.

185 (B9) Head Stability Стабильность головок (Western Digital).

187 (BB) Reported UNC Errors — Количество ошибок, которое накопитель сообщил хосту (интерфейсу компьютера) при любых операциях, обычно это ошибки данных на диске, которые не исправлены средствами ECC

188 (BC) Command Timeout — содержит количество операций, выполнение которых было отменено из–за превышения максимально допустимого времени ожидания отклика.Такие ошибки могут возникать из-за плохого качества кабелей, контактов, используемых переходников, удлинителей и т.д., несовместимости диска с конкретным контроллером SATA/РАТА на материнской плате и т.д. Из-за ошибок такого рода возможны BSOD в Windows.
Ненулевое значение атрибута говорит о потенциальной «болезни» диска.

189 (BD) High Fly Writes — содержит количество зафиксированных случаев записи при высоте «полета» головки выше рассчитанной, скорее всего, из-за внешних воздействий, например, вибрации.
Для того, чтобы сказать, почему происходят такие случаи, нужно уметь анализировать логи S.M.A.R.T., которые содержат специфичную для каждого производителя информацию

190 (BE) Airflow Temperature (WDC) — Температура воздуха внутри корпуса жёсткого диска. Для дисков Seagate рассчитывается по формуле (100 — HDA temperature). Для дисков

Western Digital

— (125 — HDA).

191 (BF) G-sense error rate — Количество ошибок, возникающих в результате ударных нагрузок. Атрибут хранит показания встроенного акселерометра, который

фиксирует все удары, толчки, падения и даже неаккуратную установку диска в корпус компьютера.

Актуален для мобильных винчестеров. На дисках Samsung на него часто можно не обращать внимания, т.к. они могут иметь очень чувствительный датчик, который, образно говоря, реагирует чуть ли не на движение воздуха от крыльев пролетающей в одном помещении с диском мухой.
Вообще срабатывание датчика не является признаком удара. Может расти даже от позиционирования БМГ самим диском, особенно, если его не закрепить. Основное назначение датчика – прекратить операцию записи при вибрациях, чтобы избежать ошибок.



75



Современный жёсткий диск — уникальный компонент компьютера. Он уникален тем, что хранит в себе служебную информацию, изучая которую, можно оценить «здоровье» диска. Эта информация содержит в себе историю изменения множества параметров, отслеживаемых винчестером в процессе функционирования. Больше ни один компонент системного блока не предоставляет владельцу статистику своей работы! Вкупе с тем, что HDD является одним из самых ненадёжных компонентов компьютера, такая статистика может быть весьма полезной и помочь его владельцу избежать нервотрёпки и потери денег и времени.

Информация о состоянии диска доступна благодаря комплексу технологий, называемых общим именем S.M.A.R.T. (Self-Monitoring, Analisys and Reporting Technology, т. е. технология самомониторинга, анализа и отчёта). Этот комплекс довольно обширен, но мы поговорим о тех его аспектах, которые позволяют посмотреть на атрибуты S.M.A.R.T., отображаемые в какой-либо программе по тестированию винчестера, и понять, что творится с диском.

Отмечу, что нижесказанное относится к дискам с интерфейсами SATA и РАТА. У дисков SAS, SCSI и других серверных дисков тоже есть S.M.A.R.T., но его представление сильно отличается от SATA/PATA. Да и мониторит серверные диски обычно не человек, а RAID-контроллер, потому про них мы говорить не будем.

Итак, если мы откроем S.M.A.R.T. в какой-либо из многочисленных программ, то увидим приблизительно следующую картину (на скриншоте приведён S.M.A.R.T. диска Hitachi Deskstar 7К1000.С HDS721010CLA332 в HDDScan 3.3):

S.M.A.R.T. в HDDScan 3.3

S.M.A.R.T. в HDDScan 3.3

В каждой строке отображается отдельный атрибут S.M.A.R.T. Атрибуты имеют более-менее стандартизованные названия и определённый номер, которые не зависят от модели и производителя диска.

Каждый атрибут S.M.A.R.T. имеет несколько полей. Каждое поле относится к определённому классу из следующих: ID, Value, Worst, Threshold и RAW. Рассмотрим каждый из классов.

  • ID (может также именоваться Number) — идентификатор, номер атрибута в технологии S.M.A.R.T. Название одного и того же атрибута программами может выдаваться по-разному, а вот идентификатор всегда однозначно определяет атрибут. Особенно это полезно в случае программ, которые переводят общепринятое название атрибута с английского языка на русский. Иногда получается такая белиберда, что понять, что же это за параметр, можно только по его идентификатору.
  • Value (Current) — текущее значение атрибута в попугаях (т. е. в величинах неизвестной размерности). В процессе работы винчестера оно может уменьшаться, увеличиваться и оставаться неизменным. По показателю Value нельзя судить о «здоровье» атрибута, не сравнивая его со значением Threshold этого же атрибута. Как правило, чем меньше Value, тем хуже состояние атрибута (изначально все классы значений, кроме RAW, на новом диске имеют максимальное из возможных значение, например 100).
  • Worst — наихудшее значение, которого достигало значение Value за всю жизнь винчестера. Измеряется тоже в «попугаях». В процессе работы оно может уменьшаться либо оставаться неизменным. По нему тоже нельзя однозначно судить о здоровье атрибута, нужно сравнивать его с Threshold.
  • Threshold — значение в «попугаях», которого должен достигнуть Value этого же атрибута, чтобы состояние атрибута было признано критическим. Проще говоря, Threshold — это порог: если Value больше Threshold — атрибут в порядке; если меньше либо равен — с атрибутом проблемы. Именно по такому критерию утилиты, читающие S.M.A.R.T., выдают отчёт о состоянии диска либо отдельного атрибута вроде «Good» или «Bad». При этом они не учитывают, что даже при Value, большем Threshold, диск на самом деле уже может быть умирающим с точки зрения пользователя, а то и вовсе ходячим мертвецом, поэтому при оценке здоровья диска смотреть стоит всё-таки на другой класс атрибута, а именно — RAW. Однако именно значение Value, опустившееся ниже Threshold, может стать легитимным поводом для замены диска по гарантии (для самих гарантийщиков, конечно же) — кто же яснее скажет о здоровье диска, как не он сам, демонстрируя текущее значение атрибута хуже критического порога? Т. е. при значении Value, большем Threshold, сам диск считает, что атрибут здоров, а при меньшем либо равном — что болен. Очевидно, что при Threshold=0 состояние атрибута не будет признано критическим никогда. Threshold — постоянный параметр, зашитый производителем в диске.
  • RAW (Data) — самый интересный, важный и нужный для оценки показатель. В большинстве случаев он содержит в себе не «попугаи», а реальные значения, выражаемые в различных единицах измерения, напрямую говорящие о текущем состоянии диска. Основываясь именно на этом показателе, формируется значение Value (а вот по какому алгоритму оно формируется — это уже тайна производителя, покрытая мраком). Именно умение читать и анализировать поле RAW даёт возможность объективно оценить состояние винчестера.

Этим мы сейчас и займёмся — разберём все наиболее используемые атрибуты S.M.A.R.T., посмотрим, о чём они говорят и что нужно делать, если они не в порядке.

Аттрибуты S.M.A.R.T.
  01 02 03 04 05 07 08 09 10 11 12 183 184 187 188 189 190
0x 01 02 03 04 05 07 08 09 0A 0B 0C B7 B8 BB BC BD BE
 
  191 192 193 194 195 196 197 198 199 200 201 202 203 220 240 254  
0x BF С0 С1 С2 С3 С4 С5 С6 С7 С8 С9 СА CB DC F0 FE  

Перед тем как описывать атрибуты и допустимые значения их поля RAW, уточню, что атрибуты могут иметь поле RAW разного типа: текущее и накапливающее. Текущее поле содержит значение атрибута в настоящий момент, для него свойственно периодическое изменение (для одних атрибутов — изредка, для других — много раз за секунду; другое дело, что в программах чтения S.M.A.R.T. такое быстрое изменение не отображается). Накапливающее поле — содержит статистику, обычно в нём содержится количество возникновений конкретного события со времени первого запуска диска.

Текущий тип характерен для атрибутов, для которых нет смысла суммировать их предыдущие показания. Например, показатель температуры диска является текущим: его цель — в демонстрации температуры в настоящий момент, а не суммы всех предыдущих температур. Накапливающий тип свойственен атрибутам, для которых весь их смысл заключается в предоставлении информации за весь период «жизни» винчестера. Например, атрибут, характеризующий время работы диска, является накапливающим, т. е. содержит количество единиц времени, отработанных накопителем за всю его историю.

Приступим к рассмотрению атрибутов и их RAW-полей.

Атрибут: 01 Raw Read Error Rate

Тип текущий, может быть накапливающим для WD и старых Hitachi
Описание содержит частоту возникновения ошибок при чтении с пластин

Для всех дисков Seagate, Samsung (начиная с семейства SpinPoint F1 (включительно)) и Fujitsu 2,5″ характерны огромные числа в этих полях.

Для остальных дисков Samsung и всех дисков WD в этом поле характерен 0.

Для дисков Hitachi в этом поле характерен 0 либо периодическое изменение поля в пределах от 0 до нескольких единиц.

Такие отличия обусловлены тем, что все жёсткие диски Seagate, некоторые Samsung и Fujitsu считают значения этих параметров не так, как WD, Hitachi и другие Samsung. При работе любого винчестера всегда возникают ошибки такого рода, и он преодолевает их самостоятельно, это нормально, просто на дисках, которые в этом поле содержат 0 или небольшое число, производитель не счёл нужным указывать истинное количество этих ошибок.

Таким образом, ненулевой параметр на дисках WD и Samsung до SpinPoint F1 (не включительно) и большое значение параметра на дисках Hitachi могут указывать на аппаратные проблемы с диском. Необходимо учитывать, что утилиты могут отображать несколько значений, содержащихся в поле RAW этого атрибута, как одно, и оно будет выглядеть весьма большим, хоть это и будет неверно (подробности см. ниже).

На дисках Seagate, Samsung (SpinPoint F1 и новее) и Fujitsu на этот атрибут можно не обращать внимания.

Атрибут: 02 Throughput Performance

Тип текущий
Описание содержит значение средней производительности диска и измеряется в каких-то «попугаях». Обычно его ненулевое значение отмечается на винчестерах Hitachi. На них он может изменяться после изменения параметров ААМ, а может и сам по себе по неизвестному алгоритму

Параметр не даёт никакой информации пользователю и не говорит ни о какой опасности при любом своём значении.

Атрибут: 03 Spin-Up Time

Тип текущий
Описание содержит время, за которое шпиндель диска в последний раз разогнался из состояния покоя до номинальной скорости. Может содержать два значения — последнее и, например, минимальное время раскрутки. Может измеряться в миллисекундах, десятках миллисекунд и т. п. — это зависит от производителя и модели диска

Время разгона может различаться у разных дисков (причём у дисков одного производителя тоже) в зависимости от тока раскрутки, массы блинов, номинальной скорости шпинделя и т. п.

Кстати, винчестеры Fujitsu всегда имеют единицу в этом поле в случае отсутствия проблем с раскруткой шпинделя.

Практически ничего не говорит о здоровье диска, поэтому при оценке состояния винчестера на параметр можно не обращать внимания.

Атрибут: 04 Number of Spin-Up Times (Start/Stop Count)

Тип накапливающий
Описание содержит количество раз включения диска. Бывает ненулевым на только что купленном диске, находившемся в запаянной упаковке, что может говорить о тестировании диска на заводе. Или ещё о чём-то, мне не известном :)

При оценке здоровья не обращайте на атрибут внимания.

Атрибут: 05 Reallocated Sector Count

Тип накапливающий
Описание содержит количество секторов, переназначенных винчестером в резервную область. Практически ключевой параметр в оценке состояния

Поясним, что вообще такое «переназначенный сектор». Когда диск в процессе работы натыкается на нечитаемый/плохо читаемый/незаписываемый/плохо записываемый сектор, он может посчитать его невосполнимо повреждённым. Специально для таких случаев производитель предусматривает на каждом диске (на каких-то моделях — в центре (логическом конце) диска, на каких-то — в конце каждого трека и т. д.) резервную область. При наличии повреждённого сектора диск помечает его как нечитаемый и использует вместо него сектор в резервной области, сделав соответствующие пометки в специальном списке дефектов поверхности — G-list. Такая операция по назначению нового сектора на роль старого называется remap (ремап) либо переназначение, а используемый вместо повреждённого сектор — переназначенным. Новый сектор получает логический номер LBA старого, и теперь при обращении ПО к сектору с этим номером (программы же не знают ни о каких переназначениях!) запрос будет перенаправляться в резервную область.

Таким образом, хоть сектор и вышел из строя, объём диска не изменяется. Понятно, что не изменяется он до поры до времени, т. к. объём резервной области не бесконечен. Однако резервная область вполне может содержать несколько тысяч секторов, и допустить, чтобы она закончилась, будет весьма безответственно — диск нужно будет заменить задолго до этого.

Кстати, ремонтники говорят, что диски Samsung очень часто ни в какую не хотят выполнять переназначение секторов.

На счёт этого атрибута мнения разнятся. Лично я считаю, что если он достиг 10, диск нужно обязательно менять — ведь это означает прогрессирующий процесс деградации состояния поверхности либо блинов, либо головок, либо чего-то ещё аппаратного, и остановить этот процесс возможности уже нет. Кстати, по сведениям лиц, приближенных к Hitachi, сама Hitachi считает диск подлежащим замене, когда на нём находится уже 5 переназначенных секторов. Другой вопрос, официальная ли эта информация, и следуют ли этому мнению сервис-центры. Что-то мне подсказывает, что нет :)

Другое дело, что сотрудники сервис-центров могут отказываться признавать диск неисправным, если фирменная утилита производителя диска пишет что-то вроде «S.M.A.R.T. Status: Good» или значения Value либо Worst атрибута будут больше Threshold (собственно, по такому критерию может оценивать и сама утилита производителя). И формально они будут правы. Но кому нужен диск с постоянным ухудшением его аппаратных компонентов, даже если такое ухудшение соответствует природе винчестера, а технология производства жёстких дисков старается минимизировать его последствия, выделяя, например, резервную область?

Атрибут: 07 Seek Error Rate

Тип текущий
Описание содержит частоту возникновения ошибок при позиционировании блока магнитных головок (БМГ)

Описание формирования этого атрибута почти полностью совпадает с описанием для атрибута 01 Raw Read Error Rate, за исключением того, что для винчестеров Hitachi нормальным значением поля RAW является только 0.

Таким образом, на атрибут на дисках Seagate, Samsung SpinPoint F1 и новее и Fujitsu 2,5″ не обращайте внимания, на остальных моделях Samsung, а также на всех WD и Hitachi ненулевое значение свидетельствует о проблемах, например, с подшипником и т. п.

Атрибут: 08 Seek Time Performance

Тип текущий
Описание содержит среднюю производительность операций позиционирования головок, измеряется в «попугаях». Как и параметр 02 Throughput Performance, ненулевое значение обычно отмечается на дисках Hitachi и может изменяться после изменения параметров ААМ, а может и само по себе по неизвестному алгоритму

Не даёт никакой информации пользователю и не говорит ни о какой опасности при любом своём значении.

Атрибут: 09 Power On Hours Count (Power-on Time)

Тип накапливающий
Описание содержит количество часов, в течение которых винчестер был включён

Ничего не говорит о здоровье диска.

Атрибут: 10 (0А — в шестнадцатеричной системе счисления) Spin Retry Count

Тип накапливающий
Описание содержит количество повторов запуска шпинделя, если первая попытка оказалась неудачной

О здоровье диска чаще всего не говорит.

Основные причины увеличения параметра — плохой контакт диска с БП или невозможность БП выдать нужный ток в линию питания диска.

В идеале должен быть равен 0. При значении атрибута, равном 1-2, внимания можно не обращать. Если значение больше, в первую очередь следует обратить пристальное внимание на состояние блока питания, его качество, нагрузку на него, проверить контакт винчестера с кабелем питания, проверить сам кабель питания.

Наверняка диск может стартовать не сразу из-за проблем с ним самим, но такое бывает очень редко, и такую возможность нужно рассматривать в последнюю очередь.

Атрибут: 11 (0B) Calibration Retry Count (Recalibration Retries)

Тип накапливающий
Описание содержит количество повторных попыток сброса накопителя (установки БМГ на нулевую дорожку) при неудачной первой попытке

Ненулевое, а особенно растущее значение параметра может означать проблемы с диском.

Атрибут: 12 (0C) Power Cycle Count

Тип накапливающий
Описание содержит количество полных циклов «включение-отключение» диска

Не связан с состоянием диска.

Атрибут: 183 (B7) SATA Downshift Error Count

Тип накапливающий
Описание содержит количество неудачных попыток понижения режима SATA. Суть в том, что винчестер, работающий в режимах SATA 3 Гбит/с или 6 Гбит/с (и что там дальше будет в будущем), по какой-то причине (например, из-за ошибок) может попытаться «договориться» с дисковым контроллером о менее скоростном режиме (например, SATA 1,5 Гбит/с или 3 Гбит/с соответственно). В случае «отказа» контроллера изменять режим диск увеличивает значение атрибута

Не говорит о здоровье накопителя.

Атрибут: 184 (B8) End-to-End Error

Тип накапливающий
Описание содержит количество ошибок, возникших при передаче данных через кэш винчестера

Ненулевое значение указывает на проблемы с диском.

Атрибут: 187 (BB) Reported Uncorrected Sector Count (UNC Error)

Тип накапливающий
Описание содержит количество секторов, которые были признаны кандидатами на переназначение (см. атрибут 197) за всю историю жизни диска. Причём если сектор становится кандидатом повторно, значение атрибута тоже увеличивается

Ненулевое значение атрибута явно указывает на ненормальное состояние диска (в сочетании с ненулевым значением атрибута 197) или на то, что оно было таковым ранее (в сочетании с нулевым значением 197).

Атрибут: 188 (BC) Command Timeout

Тип накапливающий
Описание содержит количество операций, выполнение которых было отменено из-за превышения максимально допустимого времени ожидания отклика

Такие ошибки могут возникать из-за плохого качества кабелей, контактов, используемых переходников, удлинителей и т. д., а также из-за несовместимости диска с конкретным контроллером SATA/РАТА на материнской плате (либо дискретным). Из-за ошибок такого рода возможны BSOD в Windows.

Ненулевое значение атрибута говорит о потенциальной «болезни» диска.

Атрибут: 189 (BD) High Fly Writes

Тип накапливающий
Описание содержит количество зафиксированных случаев записи при высоте полета головки выше рассчитанной — скорее всего, из-за внешних воздействий, например вибрации

Для того чтобы сказать, почему происходят такие случаи, нужно уметь анализировать логи S.M.A.R.T., которые содержат специфичную для каждого производителя информацию, что на сегодняшний день не реализовано в общедоступном ПО — следовательно, на атрибут можно не обращать внимания.

Атрибут: 190 (BE) Airflow Temperature

Тип текущий
Описание содержит температуру винчестера для дисков Hitachi, Samsung, WD и значение «100 − [RAW-значение атрибута 194]» для Seagate

Не говорит о состоянии диска.

Атрибут: 191 (BF) G-Sensor Shock Count (Mechanical Shock)

Тип накапливающий
Описание содержит количество критических ускорений, зафиксированных электроникой диска, которым подвергался накопитель и которые превышали допустимые. Обычно это происходит при ударах, падениях и т. п.

Актуален для мобильных винчестеров. На дисках Samsung на него часто можно не обращать внимания, т. к. они могут иметь очень чувствительный датчик, который, образно говоря, реагирует чуть ли не на движение воздуха от крыльев пролетающей в одном помещении с диском мухи.

Вообще срабатывание датчика не является признаком удара. Может расти даже от позиционирования БМГ самим диском, особенно если его не закрепить. Основное назначение датчика — прекратить операцию записи при вибрациях, чтобы избежать ошибок.

Не говорит о здоровье диска.

Атрибут: 192 (С0) Power Off Retract Count (Emergency Retry Count)

Тип накапливающий
Описание для разных винчестеров может содержать одну из следующих двух характеристик: либо суммарное количество парковок БМГ диска в аварийных ситуациях (по сигналу от вибродатчика, обрыву/понижению питания и т. п.), либо суммарное количество циклов включения/выключения питания диска (характерно для современных WD и Hitachi)

Не позволяет судить о состоянии диска.

Атрибут: 193 (С1) Load/Unload Cycle Count

Тип накапливающий
Описание содержит количество полных циклов парковки/распарковки БМГ. Анализ этого атрибута — один из способов определить, включена ли на диске функция автоматической парковки (столь любимая, например, компанией Western Digital): если его содержимое превосходит (обычно — многократно) содержимое атрибута 09 — счётчик отработанных часов, — то парковка включена

Не говорит о здоровье диска.

Атрибут: 194 (С2) Temperature (HDA Temperature, HDD Temperature)

Тип текущий/накапливающий
Описание содержит текущую температуру диска. Температура считывается с датчика, который на разных моделях может располагаться в разных местах. Поле вместе с текущей также может содержать максимальную и минимальную температуры, зафиксированные за всё время эксплуатации винчестера

О состоянии диска атрибут не говорит, но позволяет контролировать один из важнейших параметров. Моё мнение: при работе старайтесь не допускать повышения температуры винчестера выше 50 градусов, хоть производителем обычно и декларируется максимальный предел температуры в 55-60 градусов.

Атрибут: 195 (С3) Hardware ECC Recovered

Тип накапливающий
Описание содержит количество ошибок, которые были скорректированы аппаратными средствами ECC диска

Особенности, присущие этому атрибуту на разных дисках, полностью соответствуют таковым атрибутов 01 и 07.

Атрибут: 196 (С4) Reallocated Event Count

Тип накапливающий
Описание содержит количество операций переназначения секторов

Косвенно говорит о здоровье диска. Чем больше значение — тем хуже. Однако нельзя однозначно судить о здоровье диска по этому параметру, не рассматривая другие атрибуты.

Этот атрибут непосредственно связан с атрибутом 05. При росте 196 чаще всего растёт и 05. Если при росте атрибута 196 атрибут 05 не растёт, значит, при попытке ремапа кандидат в бэд-блоки оказался софт-бэдом (подробности см. ниже), и диск исправил его, так что сектор был признан здоровым, и в переназначении не было необходимости.

Если атрибут 196 меньше атрибута 05, значит, во время некоторых операций переназначения выполнялся перенос нескольких повреждённых секторов за один приём.

Если атрибут 196 больше атрибута 05, значит, при некоторых операциях переназначения были обнаружены исправленные впоследствии софт-бэды.

Атрибут: 197 (С5) Current Pending Sector Count

Тип текущий
Описание содержит количество секторов-кандидатов на переназначение в резервную область

Натыкаясь в процессе работы на «нехороший» сектор (например, контрольная сумма сектора не соответствует данным в нём), диск помечает его как кандидат на переназначение, заносит его в специальный внутренний список и увеличивает параметр 197. Из этого следует, что на диске могут быть повреждённые секторы, о которых он ещё не знает — ведь на пластинах вполне могут быть области, которые винчестер какое-то время не использует.

При попытке записи в сектор диск сначала проверяет, не находится ли этот сектор в списке кандидатов. Если сектор там не найден, запись проходит обычным порядком. Если же найден, проводится тестирование этого сектора записью-чтением. Если все тестовые операции проходят нормально, то диск считает, что сектор исправен. (Т. е. был т. н. «софт-бэд» — ошибочный сектор возник не по вине диска, а по иным причинам: например, в момент записи информации отключилось электричество, и диск прервал запись, запарковав БМГ. В итоге данные в секторе окажутся недописанными, а контрольная сумма сектора, зависящая от данных в нём, вообще останется старой. Налицо будет расхождение между нею и данными в секторе.) В таком случае диск проводит изначально запрошенную запись и удаляет сектор из списка кандидатов. При этом атрибут 197 уменьшается, также возможно увеличение атрибута 196.

Если же тестирование заканчивается неудачей, диск выполняет операцию переназначения, уменьшая атрибут 197, увеличивая 196 и 05, а также делает пометки в G-list.

Итак, ненулевое значение параметра говорит о неполадках (правда, не может сказать о том, в само́м ли диске проблема).

При ненулевом значении нужно обязательно запустить в программах Victoria или MHDD последовательное чтение всей поверхности с опцией remap. Тогда при сканировании диск обязательно наткнётся на плохой сектор и попытается произвести запись в него (в случае Victoria 3.5 и опции Advanced remap — диск будет пытаться записать сектор до 10 раз). Таким образом программа спровоцирует «лечение» сектора, и в итоге сектор будет либо исправлен, либо переназначен.

Идёт последовательное чтение с ремапом в Victoria 4.46b

Идёт последовательное чтение с ремапом в Victoria 4.46b

В случае неудачи чтения как с remap, так и с Advanced remap, стоит попробовать запустить последовательную запись в тех же Victoria или MHDD. Учитывайте, что операция записи стирает данные, поэтому перед её применением обязательно делайте бэкап!

Запуск последовательной записи в Victoria 4.46b

Запуск последовательной записи в Victoria 4.46b

Иногда от невыполнения ремапа могут помочь следующие манипуляции: снимите плату электроники диска и почистите контакты гермоблока винчестера, соединяющие его с платой — они могут быть окислены. Будь аккуратны при выполнении этой процедуры — из-за неё можно лишиться гарантии!

Невозможность ремапа может быть обусловлена ещё одной причиной — диск исчерпал резервную область, и ему просто некуда переназначать секторы.

Если же значение атрибута 197 никакими манипуляциями не снижается до 0, следует думать о замене диска.

Атрибут: 198 (С6) Offline Uncorrectable Sector Count (Uncorrectable Sector Count)

Тип текущий
Описание означает то же самое, что и атрибут 197, но отличие в том, что данный атрибут содержит количество секторов-кандидатов, обнаруженных при одном из видов самотестирования диска — оффлайн-тестировании, которое диск запускает в простое в соответствии с параметрами, заданными прошивкой

Параметр этот изменяется только под воздействием оффлайн-тестирования, никакие сканирования программами на него не влияют. При операциях во время самотестирования поведение атрибута такое же, как и атрибута 197.

Ненулевое значение говорит о неполадках на диске (точно так же, как и 197, не конкретизируя, кто виноват).

Атрибут: 199 (С7) UltraDMA CRC Error Count

Тип накапливающий
Описание содержит количество ошибок, возникших при передаче по интерфейсному кабелю в режиме UltraDMA (или его эмуляции винчестерами SATA) от материнской платы или дискретного контроллера контроллеру диска

В подавляющем большинстве случаев причинами ошибок становятся некачественный шлейф передачи данных, разгон шин PCI/PCI-E компьютера либо плохой контакт в SATA-разъёме на диске или на материнской плате/контроллере.

Ошибки при передаче по интерфейсу и, как следствие, растущее значение атрибута могут приводить к переключению операционной системой режима работы канала, на котором находится накопитель, в режим PIO, что влечёт резкое падение скорости чтения/записи при работе с ним и загрузку процессора до 100% (видно в Диспетчере задач Windows).

В случае винчестеров Hitachi серий Deskstar 7К3000 и 5К3000 растущий атрибут может говорить о несовместимости диска и SATA-контроллера. Чтобы исправить ситуацию, нужно принудительно переключить такой диск в режим SATA 3 Гбит/с.

Моё мнение: при наличии ошибок — переподключите кабель с обоих концов; если их количество растёт и оно больше 10 — выбрасывайте шлейф и ставьте вместо него новый или снимайте разгон.

Можно считать, что о здоровье диска атрибут не говорит.

Атрибут: 200 (С8) Write Error Rate (MultiZone Error Rate)

Тип текущий
Описание содержит частоту возникновения ошибок при записи

Ненулевое значение говорит о проблемах с диском — в частности, у дисков WD большие цифры могут означать «умирающие» головки.

Атрибут: 201 (С9) Soft Read Error Rate

Тип текущий
Описание содержит частоту возникновения ошибок чтения, произошедших по вине программного обеспечения

Влияние на здоровье неизвестно.

Атрибут: 202 (СА) Data Address Mark Error

Тип неизвестно
Описание содержание атрибута — загадка, но проанализировав различные диски, могу констатировать, что ненулевое значение — это плохо

Атрибут: 203 (CB) Run Out Cancel

Тип текущий
Описание содержит количество ошибок ECC

Влияние на здоровье неизвестно.

Атрибут: 220 (DC) Disk Shift

Тип текущий
Описание содержит измеренный в неизвестных единицах сдвиг пластин диска относительно оси шпинделя

Влияние на здоровье неизвестно.

Атрибут: 240 (F0) Head Flying Hours

Тип накапливающий
Описание содержит время, затраченное на позиционирование БМГ. Счётчик может содержать несколько значений в одном поле

Влияние на здоровье неизвестно.

Атрибут: 254 (FE) Free Fall Event Count

Тип накапливающий
Описание содержит зафиксированное электроникой количество ускорений свободного падения диска, которым он подвергался, т. е., проще говоря, показывает, сколько раз диск падал

Влияние на здоровье неизвестно.

Подытожим описание атрибутов. Ненулевые значения:

  • атрибутов 01, 07, 195 — вызывают подозрения в «болезни» у некоторых моделей дисков;
  • атрибутов 10, 11, 188, 196, 199, 202 — вызывают подозрения у всех дисков;
  • и, наконец, атрибутов 05, 184, 187, 197, 198, 200 — прямо говорят о неполадках.

При анализе атрибутов учитывайте, что в некоторых параметрах S.M.A.R.T. могут храниться несколько значений этого параметра: например, для предпоследнего запуска диска и для последнего. Такие параметры длиной в несколько байт логически состоят из нескольких значений длиной в меньшее количество байт — например, параметр, хранящий два значения для двух последних запусков, под каждый из которых отводится 2 байта, будет иметь длину 4 байта. Программы, интерпретирующие S.M.A.R.T., часто не знают об этом, и показывают этот параметр как одно число, а не два, что иногда приводит к путанице и волнению владельца диска. Например, «Raw Read Error Rate», хранящий предпоследнее значение «1» и последнее значение «0», будет выглядеть как 65536.

Надо отметить, что не все программы умеют правильно отображать такие атрибуты. Многие как раз и переводят атрибут с несколькими значениями в десятичную систему счисления как одно огромное число. Правильно же отображать такое содержимое — либо с разбиением по значениям (тогда атрибут будет состоять из нескольких отдельных чисел), либо в шестнадцатеричной системе счисления (тогда атрибут будет выглядеть как одно число, но его составляющие будут легко различимы с первого взгляда), либо и то, и другое одновременно. Примерами правильных программ служат HDDScan, CrystalDiskInfo, Hard Disk Sentinel.

Продемонстрируем отличия на практике. Вот так выглядит мгновенное значение атрибута 01 на одном из моих Hitachi HDS721010CLA332 в неучитывающей особенности этого атрибута Victoria 4.46b:

Атрибут 01 в Victoria 4.46b

Атрибут 01 в Victoria 4.46b

А так выглядит он же в «правильной» HDDScan 3.3:

Атрибут 01 в HDDScan 3.3

Атрибут 01 в HDDScan 3.3

Плюсы HDDScan в данном контексте очевидны, не правда ли?

Если анализировать S.M.A.R.T. на разных дисках, то можно заметить, что одни и те же атрибуты могут вести себя по-разному. Например, некоторые параметры S.M.A.R.T. винчестеров Hitachi после определённого периода неактивности диска обнуляются; параметр 01 имеет особенности на дисках Hitachi, Seagate, Samsung и Fujitsu, 03 — на Fujitsu. Также известно, что после перепрошивки диска некоторые параметры могут установиться в 0 (например, 199). Однако подобное принудительное обнуление атрибута ни в коем случае не будет говорить о том, что проблемы с диском решены (если таковые были). Ведь растущий критичный атрибут — это следствие неполадок, а не причина.

При анализе множества массивов данных S.M.A.R.T. становится очевидным, что набор атрибутов у дисков разных производителей и даже у разных моделей одного производителя может отличаться. Связано это с так называемыми специфичными для конкретного вендора (vendor specific) атрибутами (т. е. атрибутами, используемыми для мониторинга своих дисков определённым производителем) и не должно являться поводом для волнения. Если ПО мониторинга умеет читать такие атрибуты (например, Victoria 4.46b), то на дисках, для которых они не предназначены, они могут иметь «страшные» (огромные) значения, и на них просто не нужно обращать внимания. Вот так, например, Victoria 4.46b отображает RAW-значения атрибутов, не предназначенных для мониторинга у Hitachi HDS721010CLA332:

«Страшные» значения в Victoria 4.46b

«Страшные» значения в Victoria 4.46b

Нередко встречается проблема, когда программы не могут считать S.M.A.R.T. диска. В случае исправного винчестера это может быть вызвано несколькими факторами. Например, очень часто не отображается S.M.A.R.T. при подключении диска в режиме AHCI. В таких случаях стоит попробовать разные программы, в частности HDD Scan, которая обладает умением работать в таком режиме, хоть у неё и не всегда это получается, либо же стоит временно переключить диск в режим совместимости с IDE, если есть такая возможность. Далее, на многих материнских платах контроллеры, к которым подключаются винчестеры, бывают не встроенными в чипсет или южный мост, а реализованы отдельными микросхемами. В таком случае DOS-версия Victoria, например, не увидит подключённый к контроллеру жёсткий диск, и ей нужно будет принудительно указывать его, нажав клавишу [Р] и введя номер канала с диском. Часто не читаются S.M.A.R.T. у USB-дисков, что объясняется тем, что USB-контроллер просто не пропускает команды для чтения S.M.A.R.T. Практически никогда не читается S.M.A.R.T. у дисков, функционирующих в составе RAID-массива. Здесь тоже есть смысл попробовать разные программы, но в случае аппаратных RAID-контроллеров это бесполезно.

Если после покупки и установки нового винчестера какие-либо программы (HDD Life, Hard Drive Inspector и иже с ними) показывают, что: диску осталось жить 2 часа; его производительность — 27%; здоровье — 19,155% (выберите по вкусу) — то паниковать не стоит. Поймите следующее. Во-первых, нужно смотреть на показатели S.M.A.R.T., а не на непонятно откуда взявшиеся числа здоровья и производительности (впрочем, принцип их подсчёта понятен: берётся наихудший показатель). Во-вторых, любая программа при оценке параметров S.M.A.R.T. смотрит на отклонение значений разных атрибутов от предыдущих показаний. При первых запусках нового диска параметры непостоянны, необходимо некоторое время на их стабилизацию. Программа, оценивающая S.M.A.R.T., видит, что атрибуты изменяются, производит расчёты, у неё получается, что при их изменении такими темпами накопитель скоро выйдет из строя, и она начинает сигнализировать: «Спасайте данные!» Пройдёт некоторое время (до пары месяцев), атрибуты стабилизируются (если с диском действительно всё в порядке), утилита наберёт данных для статистики, и сроки кончины диска по мере стабилизации S.M.A.R.T. будут переноситься всё дальше и дальше в будущее. Оценка программами дисков Seagate и Samsung — вообще отдельный разговор. Из-за особенностей атрибутов 1, 7, 195 программы даже для абсолютно здорового диска обычно выдают заключение, что он завернулся в простыню и ползёт на кладбище.

Обратите внимание, что возможна следующая ситуация: все атрибуты S.M.A.R.T. — в норме, однако на самом деле диск — с проблемами, хоть этого пока ни по чему не заметно. Объясняется это тем, что технология S.M.A.R.T. работает только «по факту», т. е. атрибуты меняются только тогда, когда диск в процессе работы встречает проблемные места. А пока он на них не наткнулся, то и не знает о них и, следовательно, в S.M.A.R.T. ему фиксировать нечего.

Таким образом, S.M.A.R.T. — это полезная технология, но пользоваться ею нужно с умом. Кроме того, даже если S.M.A.R.T. вашего диска идеален, и вы постоянно устраиваете диску проверки — не полагайтесь на то, что ваш диск будет «жить» ещё долгие годы. Винчестерам свойственно ломаться так быстро, что S.M.A.R.T. просто не успевает отобразить его изменившееся состояние, а бывает и так, что с диском — явные нелады, но в S.M.A.R.T. — всё в порядке. Можно сказать, что хороший S.M.A.R.T. не гарантирует, что с накопителем всё хорошо, но плохой S.M.A.R.T. гарантированно свидетельствует о проблемах. При этом даже с плохим S.M.A.R.T. утилиты могут показывать, что состояние диска — «здоров», из-за того, что критичными атрибутами не достигнуты пороговые значения. Поэтому очень важно анализировать S.M.A.R.T. самому, не полагаясь на «словесную» оценку программ.

Хоть технология S.M.A.R.T. и работает, винчестеры и понятие «надёжность» настолько несовместимы, что принято считать их просто расходным материалом. Ну, как картриджи в принтере. Поэтому во избежание потери ценных данных делайте их периодическое резервное копирование на другой носитель (например, другой винчестер). Оптимально делать две резервные копии на двух разных носителях, не считая винчестера с оригинальными данными. Да, это ведёт к дополнительным затратам, но поверьте: затраты на восстановление информации со сломавшегося HDD обойдутся вам в разы — если не на порядок-другой — дороже. А ведь данные далеко не всегда могут восстановить даже профессионалы. Т. е. единственная возможность обеспечить надёжное хранение ваших данных — это делать их бэкап.

Напоследок упомяну некоторые программы, которые хорошо подходят для анализа S.M.A.R.T. и тестирования винчестеров: HDDScan (работает в Windows, бесплатная), CrystalDiskInfo (Windows, бесплатная), Hard Disk Sentinel (платная для Windows, бесплатная для DOS), HD Tune (Windows, платная, есть бесплатная старая версия).

И наконец, мощнейшие программы для тестирования: Victoria (Windows, DOS, бесплатная), MHDD (DOS, бесплатная).

Эту статью не следует рассматривать как руководство пользователя или документацию для программистов.


Цель проделанной мною работы — попытаться разьяснить в приличной, доступной, а главное — рускоязычной форме, все особенности данной технологии. Естесственно, охватить ПОЛНОСТЬЮ все возможности технологии S.M.A.R.T. просто не возможно по причине ужасающего факта отсутствия какой-либо документации и нежелания подавляющего числа производителей жестких дисков предоставить необходимую информацию или вести какие-либо переговоры.

Текст статьи постоянно обновляется, поэтому на возможные неточности и грамматические ошибки прошу не обращать внимания. Но если Вы заметите явную ошибку или «ужасающую» :) неточность — пожалуйста, напишите мне об этом.

Я с удовольствием приму любые комментарии по тексту, а также Ваши пожелания и дополнения.

1.1. Общее описание.

Технология S.M.A.R.T.Self-Monitoring, Analysis and Reporting Technology (от англ. «Технология Самодиагностики, Анализа и Отчета») — была разработана для повышения надежности и сохранности данных на жестких дисках. В большинстве случаев, SMART-совместимые устройства позволяют предсказать появление наиболее вероятных ошибок и, тем самым, дают пользователю возможность своевременно сделать резервную копию данных и/или полностью заменить накопитель до выхода его из строя.

S.M.A.R.T. представляет собой набор мини-подпрограмм, которые являются частью микрокода накопителя и определяют поддерживаемые диагностические функции. Наиболее распространенные среди них:

  • набор атрибутов, отражающих состояние отдельных параметров накопителя (до 30)
  • внутренние тесты накопителя (self-test)
  • журналы S.M.A.R.T. (ошибок, общего состояния, дефектных секторов и т.п.)

В настоящий момент не существует официальной документации или стандарта на технологию S.M.A.R.T. В связи с этим, производители не публикуют полные характеристики и поддерживаемые функции S.M.A.R.T. в своих накопителях. Обязательный минимум описан в последнем стандарте ATA/ATAPI-6.

1.2. Развитие технологии S.M.A.R.T.

История технологии S.M.A.R.T. не так уж и богата подробностями:

  • SMART I предусматривал мониторинг основных жизненно важных параметров и запускался только после команды по интерфейсу

  • в SMART II появилась возможность фоновой проверки поверхности, которая выполнялась накопителем автоматически во время «холостого хода»; появилась функция журналирования ошибок

  • в SMART III впервые появилась не только функция обнаружения дефектов поверхности, но и возможность их восстановления «прозрачно» для пользователя и многие другие новшества

Известно, что первыми разработали основы и предложили эту технологию совместно Western Digital, Seagate и Quantum. После этого их уже поддержали такие компании как IBM, Maxtor и Samsung. Hitachi приняла участие в развитии технологии S.M.A.R.T. уже на стадии разработки SMART II, первыми предложив методику полной самодиагностики накопителя (extended self-test).

В настоящее время производители жестких дисков готовятся принять к использованию новый вариант технологии S.M.A.R.T.«1024 S.M.A.R.T.», характерной особенностью которого будет заметно бОльший размер журналов, повсеместное использование мультисекторных журналов, более точные алгоритмы анализа показаний встроенных в накопитель сенсоров (термодатчики, сенсоры ударов, и т.п.) и многое другое. Вот несколько новых функций:

  • введение алгоритма анализа температурного режима накопителя

  • введение ограничения по минимальной и максимальной температуре в рабочем состоянии

  • введение счетчика общего количества записанных секторов на протяжении жизненного цикла накопителя

  • введение счетчика запусков внутренних алгоритмов восстановления (recovery counters)

Главным же плюсом можно считать введение новых атрибутов, которые позволят контролировать состояние и рабочие характеристики по каждой из головок чтения/записи:

  • относительная устойчивость (стабильность «полета») головки

  • исправление ошибок чтения (со «скрытыми» повторными попытками)

  • автоматическое перераспределение дефектных участков поверхности при операциях записи

  • счетчик-накопитель G-List для учета количества принятых ударных нагрузок

  • счетчик-накопитель S-List для учета общего количества «программных» ошибок

Атрибуты.

Атрибуты S.M.A.R.T. — особые характеристики, которые используются при анализе состояния и запаса производительности накопителя. Атрибуты выбираются производителем накопителя, основываясь на способности этих атрибутов предсказывать ухудшение рабочих характеристик накопителя или определить его дефектность. Каждый производитель имеет свой характерный набор атрибутов и может свободно вносить изменения в этот набор в соответствиии со своими собственными требованиями и без уведомления об этом фирм-продавцов и конечных пользователей.

1.3.1. Значения атрибутов.
Значения атрибутов (value) используются для представления относительной надежности отдельного эксплуатационного или эталонного атрибута. Допустимое значение атрибута лежит в диапазоне от 1 до 255. Высокое значение атрибута говорит о том, что результат анализа данной рабочей характеристики указывает на низкую вероятность ее ухудшения или выхода накопителя из строя. Соответственно, низкое значение атрибута говорит о том, что результат анализа данной рабочей характеристики указывает на высокую вероятность ее ухудшения или выхода накопителя из строя.

1.3.2. Пороговые значения атрибутов.
Каждый атрибут имеет собственное пороговое значение (threshold), которое используется для сравнения со значением атрибута (value) и указывает на ухудшение рабочих характеристик или дефектность накопителя. Числовое значение порогового атрибута определяется производителем накопителя через конструкционные особенности накопителя и анализ результатов испытаний на надежность. Пороговое значение каждого атрибута указывает на нижнюю допустимую границу значения атрибута, вплоть до которой сохраняется положительный статус надежности.

Пороговые значения устанавливаются в заводских условиях производителем накопителя и, в большинстве случаев, могут быть изменены только после переключения накопителя в технологический (factory mode). Допустимое пороговое значение атрибута может находится в диапазоне от 1 до 255.

Если значение одного или более атрибутов, имеющих тип pre-failure (в HDD Speed отмечаются символом «*«), меньше или равно соответствующего порогового значения, то это свидетельствует о предстоящем ухудшении рабочих характеристик и/или полном выходе накопителя из строя.

1.3.3. Краткое описание основных атрибутов.
Данный перечень атрибутов является наиболее полным из доступных на сегодняшний момент в Сети или иных источниках. Назначение атрибутов и способ интерпретации их значений выявлены либо опытным путем, либо получены от служб технической поддержки компаний-производителей накопителей.

Ниже приведена сводная таблица всех известных мне атрибутов (55) и краткое описание к большинству (38) из них.

ID Название атрибута
0    = атрибут не используется
1   Raw Read Error Rate
2   Throughput Performance
3   Spin Up Time
4   Start/Stop Count
5   Reallocated Sector Count
6   Read Channel Margin
7   Seek Error Rate
8   Seek Time Performance
9   Power-On Hours Count
10   Spin Retry Count
11   Recalibration Retries
12   Device Power Cycle Count
13   Soft Read Error Rate
??   Emergency Re-track (Hitachi)
??   ECC On-The-Fly Count (Hitachi)
96   ? (Maxtor)
97   ? (Maxtor)
98   ? (Maxtor)
99   ? (Maxtor)
100   ? (Maxtor)
101   ? (Maxtor)
191   G-Sense Error Rate
192   Power-Off Retract Cycle
193   Load/Unload Cycle Count
194   Temperature
195   ? (Quantum AS, Seagate, Maxtor)
196   Reallocation Events Count
197   Current Pending Sector Count
198   Uncorrectable Sector Count
199   UltraDMA CRC Error Rate
200   Write Error Rate (в WD — MultiZone Error Rate)
201   TA Counter Detected
202   TA Counter Increased
203   ? (Maxtor)
204   ? (Maxtor)
205   ? (Maxtor)
206   ? (Maxtor)
207   ? (Maxtor)
208   ? (Maxtor)
209   ? (Maxtor)
220   Disk Shift
221   G-Sense Error Rate (в Hitachi — Shock Sense Error Rate)
222   Loaded Hours
223   Load/Unload Retry Count
224   Load Friction
225   Load/Unload Cycle Count
226   Load-in Time
227   Torque Amplification Count
228   Power-Off Retract Count
229   ? (IBM DTTA, thanx to Vladislav Shaklein)
230   GMR Head Amplitude
231   Temperature
240   Head Flying Hours (Hitachi)
250   Read Error Retry Rate

Краткое описание известных атрибутов.

  • * (используется в программе HDD Speed)
    Данный указатель показывает, что соответствующий атрибут S.M.A.R.T. является критическим для нормального функционирования накопителя. Ухудшение значений таких атрибутов с наибольшей вероятностью приводит к выходу накопителя из строя. В новых материнских платах BIOS имеют встроенную функцию контроля состояния накопителя именно по этим атрибутам.

  • Raw Read Error Rate
    Частота появления ошибок при чтении данных с диска.
    Данный параметр показывает частоту появления ошибок при операциях чтения с поверхности диска по вине аппаратной части накопителя.

  • Throughput Performance
    Средняя производительность (пропускная способность) диска.

    Уменьшение значения value этого атрибута с большой вероятностью указывает на проблемы в накопителе.

  • Spin Up Time
    Время раскрутки шпинделя.
    Среднее время раскрутки шпинделя диска от 0 RPM до рабочей скорости. Предположительно, в поле raw value содержится время в миллисекундах/секундах.

  • Start/Stop Count
    Количество циклов запуск/останов шпинделя.
    Поле raw value хранит общее количество включений/выключений диска.

  • Reallocated Sectors Count
    Количество переназначенных секторов.
    Когда жесткий диск встречает ошибку чтения/записи/верификации он пытается переместить данные из него в специальную резервную область (spare area) и, в случае успеха, помечает сектор как «переназначенный». Также, этот процесс называют remapping, а переназначенный сектор — remap. Благодаря этой возможности, на современных жестких дисках очень редко видны [при тестировании поверхности] так называемые bad block. Однако, при большом количестве ремапов, на графике чтения с поверхности будут заметны «провалы» — резкое падение скорости чтения (до 10% и более).
    Поле raw value содержит общее количество переназначенных секторов.

  • Read Channel Margin
    Запас канала чтения.
    Назначение этого атрибута не документировано и в современных накопителях он не используется.

  • Seek Error Rate
    Частота появления ошибок позиционирования БМГ.
    В случае сбоя в механической системе позиционирования, повреждения сервометок (servo), сильного термического расширения дисков и т.п. возникают ошибки позиционирования. Чем их больше, тем хуже состояние механики и/или поверхности жесткого диска.

  • Seek Time Performance
    Средняя производительность операций позиционирования БМГ.
    Данный параметр показывает среднюю скорость позиционирования привода БМГ на указанный сектор. Снижение значения этого атрибута говорит о неполадках в механике привода.

  • Power-On Hours
    Количество отработанных часов во включенном состоянии.
    Поле raw value этого атрибута показывает количество часов (минут, секунд — в зависимости от производителя), отработанных жестким диском. Снижение значения (value) атрибута до критического уровня (threshold) указывает на выработку диском ресурса (MTBFMean Time Between Failures). На практике, даже падение этого атрибута до нулевого значения не всегда указывает на реальное исчерпывание ресурса и накопитель может продолжать нормально функционировать.

  • Spin Retry Count
    Количество повторов попыток старта шпинделя диска.
    Данный атрибут фиксирует общее количество попыток раскрутки шпинделя и его выхода на рабочую скорость, при условии, что первая попытка была неудачной. Снижение значения этого атрибута говорит о неполадках в механике привода.

  • Recalibration Retries
    Количество повторов попыток рекалибровки накопителя.
    Данный атрибут фиксирует общее количество попыток сброса состояния накопителя и установки головок на нулевую дорожку, при условии, что первая попытка была неудачной. Снижение значения этого атрибута говорит о неполадках в механике привода.

  • Device Power Cycle Count
    Количество полных циклов запуска/останова жесткого диска.

  • Soft Read Error Rate
    Частота появления «программных» ошибок при чтении данных с диска.
    Данный параметр показывает частоту появления ошибок при операциях чтения с поверхности диска по вине программного обеспечения, а не аппаратной части накопителя.

  • Emergency Re-track

  • ECC On-The-Fly Count

  • Load/Unload Cycle Count
    Количество циклов вывода БМГ в специальную парковочную зону/в рабочее положение.
    Подробнее — см. описание технологии Head Load/Unload Technology.

  • Temperature
    Температура.
    Данный параметр отражает в поле raw value показание встроенного температурного сенсора в градусах Цельсия.

  • Reallocation Event Count
    Количество операций переназначения (ремаппинга).
    Поле raw value этого атрибута показывает общее количество попыток переназначения сбойных секторов в резервную область, предпринятых накопителем. При этом, учитываются как успешные, так и неудачные операции.

  • Current Pending Sector Count
    Текущее количество нестабильных секторов.
    Поле raw value этого атрибута показывает общее количество секторов, которые накопитель в данный момент считает претендентами на переназначение в резервную область (remap). Если в дальнейшем какой-то из этих секторов будет прочитан успешно, то он исключается из списка претендентов. Если же чтение сектора будет сопровождаться ошибками, то накопитель попытается восстановить данные и перенести их в резервную область, а сам сектор пометить как переназначенный (remapped). Постоянно ненулевое значение raw value этого атрибута говорит о низком качестве (отдельной зоны) поверхности диска.

  • Uncorrectable Sector Count
    Количество нескорректированных ошибок.
    Атрибут показывает общее количество ошибок, возникших при чтении/записи сектора и которые не удалось скорректировать. Рост значения в поле raw value этого атрибута указывает на явные дефекты поверхности и/или проблемы в работе механики накопителя.

  • UltraDMA CRC Error Count
    Общее количество ошибок CRC в режиме UltraDMA.
    Поле raw value содержит количество ошибок, возникших в режиме передачи данных UltraDMA в контрольной сумме (ICRCInterface CRC).

    Примечание автора

    . Практика, собранная статистика и изучение журналов ошибок SMART показывают: в большинстве случаев ошибки CRC возникают при сильном завышении частоты PCI (больше номинальных 33.6 MHz), сильно перекрученом кабеле, а также — по вине драйверов ОС, которые не соблюдают требований к передачи/приему данных в режимах UltraDMA.

  • Write Error Rate (Multi Zone Error Rate)
    Частота появления ошибок при записи данных.
    Показывает общее количество ошибок, обнаруженных во время записи сектора. Чем больше значение в поле raw value (и ниже значение value), тем хуже состояние поверхности диска и/или механики привода.

  • Disk Shift
    Сдвиг пакета дисков относительно оси шпинделя.
    Актуальное значение атрибута содержится в поле raw value. Единицы измерения — не известны.
    Подробности — см. в описании технологии G-Force Protection.

    Примечание

    . Сдвиг пакета дисков возможен в результате сильной ударной нагрузки на накопитель в результате его падения или по иным причинам.

  • G-Sense Error Rate
    Частота появления ошибок в результате ударных нагрузок.
    Данный атрибут хранит показания ударочувствительного сенсора — общее количество ошибок, возникших в результате полученных накопителем внешних ударных нагрузок (при падении, неправильной установке, и т.п.).
    Подробнее — см. описание технологии G-Force Protection.

  • Loaded Hours
    Нагрузка на привод БМГ, вызванная общей наработкой часов накопителем.
    Учитывается только период, в течении которого головки находились в рабочем положении.

  • Load/Unload Retry Count
    Нагрузка на привод БМГ, вызванная многочисленными повторениями операций чтения, записи, позиционирования головок и т.п. Учитывается только период, в течении которого головки находились в рабочем положении.

  • Load Friction
    Нагрузка на привод БМГ, вызванная трением в механических частях накопителя.
    Учитывается только период, в течении которого головки находились в рабочем положении.

  • Load/Unload Cycle Count
    Общее количество циклов нагрузки на привод БМГ.
    Учитывается только период, в течении которого головки находились в рабочем положении.

  • Load-in Time
    Общее время нагрузки на привод БМГ.
    Предположительно, данный атрибут показывает общее время работы накопителя под нагрузкой, при условии, что головки находятся в рабочем состоянии (вне парковочной зоны).

  • Torque Amplification Count
    Количество усилий вращающего момента привода.

  • Power-Off Retract Count
    Количество зафиксированных повторов в(ы)ключения питания накопителя.

  • GMR Head Amplitude
    Амплитуда дрожания головок (GMR-head) в рабочем состоянии.

  • Head Flying Hours

  • Read Error Retry Rate

1.3.4. Типы атрибутов.
Каждый атрибут может иметь некоторый набор флагов, определяющих его функциональные особенности. Ниже приводятся все шесть основных типов и их краткие описания.

  • Pre-failure (PF). Если атрибут имеет этот тип, то поле threshold атрибута содержит минимально допустимое значение атрибута, ниже которого не гарантируется работоспособность накопителя и резко увеличивается вероятность его выхода из строя.

  • On-line collection (OC). Указывает, что значение данного атрибута обновляется (вычисляется) во время выполнения on-line тестов S.M.A.R.T. или же во время обоих видов тестов (on-line/off-line). В противном случае, значение атрибута обновляется только при выполнении off-line тестов.

  • Performance related (PR). Указывает на то, что значение этого атрибута напрямую зависит от производительности накопителя по отдельным показателям (seek/throughput/etc. performance). Обычно обновляется после выполнения self-test`ов SMART.

  • Error rate (ER). Указывает на то, что значение атрибута отражает относительную частоту ошибок по данному параметру (raw read/write, seek, etc.).

  • Events count (EC). Указывает на то, что атрибут является счетчиком событий.

  • Self-preserve (SP). Указывает на то, что значение атрибута обновляется и сохраняется автоматически (обычно при каждом старте накопителя и при выполнении тестов SMART).

Автономное сканирование поверхности
(off-line read scanning)

Большинство накопителей обеспечивают поддержку автономного сканирования поверхности, которое является одной из функций подпрограммы автономного сбора данных о состоянии накопителя (off-line data collection). При выполнении этой функции, накопитель выполняет полное сканирование поверхности путем чтения каждого сектора и замещением ненадежных секторов на запасные сектора из резервной области (spare area) для предотвращения потери пользовательских данных.

Примечание. Если во время выполнения сканирования накопитель получает команду по интерфейсу, то процесс сканирования прерывается и накопитель приступает к обработке поступившей команды. При этом гарантируется максимальное время реагирования на поступившую команду — до 2 секунд.

Журналы ошибок
(SMART error log)

В большинстве современных накопителей реализованна функция журналирования появляющихся в течении работы накопителя ошибок или иных событий. В основном, накопители предоставляют информацию о пяти последних ошибках. При этом сохраняются последние 5 поступивших в накопитель команд, предшествующих возникновению этой ошибки, и другая необходимая информация.Накопитель может также поддерживать дополнительные журналы. Их структура, размер и назначение устанавливаются фирмой-производителем. При обновлении микропрограммы накопителя, все журналы накопителя очищаются, а общее количество ошибок устанавливается в значение 0.

Примечание: в журналах сохраняется время по внутренним часам накопителя, т.е. либо общее отработанное время на данный момент, либо время от момента последнего включения накопителя.

1.5.1. Log Directory
    Тип: Каталог журналов S.M.A.R.T.
    Вид доступа: только чтение (RO)
    Размер: 1 сектор (512 байт)
    Примечание: поддержка мультисекторных журналов

Данный журнал представляет собой своего рода каталог, в котором указаны адреса всех поддерживаемых журналов S.M.A.R.T. и их размер в секторах. Максимальное количество журналов — 255.

1.5.2. Summary Error Log
    Тип: Суммарный журнал ошибок
    Вид доступа: только чтение (RO)
    Размер: 1 сектор (512 байт)
    Примечание: поддерживается только 28-битная адресация секторов (28-bit LBA)

Данный журнал содержит информацию об общем количестве ошибок, зафиксированных накопителем с момента первого включения (или обновления микропрограммы) и подробные записи о последних 5 ошибках. Для каждой из 5 зафиксированных ошибок сохраняются последние 5 поступивших в накопитель команд. В этом журнале сохраняются все ошибки UNC, IDNF, ошибки сервосистемы, записи/чтения и т.д. При этом, для каждой команды сохраняется значения всех регистров, время и текущее состояние накопителя на момент подачи самой команды. Ошибки, вызванные подачей неподдерживаемых команд или командами с ошибочными параментами не фиксируются в журнале. Если накопитель поддерживает Comprehensive Error Log, то журнал Summary Error Log дублирует последние пять записей из журнала Comprehensive Error Log.

1.5.3. Comprehensive Error Log
    Тип: Комплексный журнал ошибок [SMART Error Logging]
    Вид доступа: только чтение (RO)
    Размер: 1..51 сектор (максимум 26,112 байт)
    Примечание: поддерживается только 28-битная адресация секторов (28-bit LBA)

Данный журнал содержит подробную информацию о общем количестве ошибок, зафиксированных накопителем с момента первого включения (или обновления микропрограммы) и подробные записи о последних ошибках. Максимальное количество сохраняемых ошибок — 255. Для каждой зафиксированной ошибки сохраняются последние 5 поступивших в накопитель команд. В этом журнале сохраняются все ошибки UNC, IDNF, ошибки сервосистемы, записи/чтения и т.д. При этом, для каждой команды сохраняется значения всех регистров, время и текущее состояние накопителя на момент подачи самой команды. Ошибки, вызванные подачей неподдерживаемых команд или командами с ошибочными параментами не фиксируются в журнале.

1.5.4. Extended Comprehensive Error Log
    Тип: Расширенный комплексный журнал ошибок [SMART Error Logging]
    Вид доступа: только чтение (RO)
    Размер: 1..65,536 секторов (максимум 32 Мбайт)
    Примечание: поддерживается 28/48-битная адресация секторов

Назначение данного журнала аналогично журналу Comprehensive Error Log и содержит в себе копию его записей, однако этот журнал имеет иную структуру, которая позволяет реализовать поддержку как 28-битной, так и 48-битной адресации секторов. Максимальное количество сохраняемых ошибок — 327,680.

1.5.5. Self-test Log
    Тип: Журнал результатов самоконтроля [SMART self-test]
    Вид доступа: только чтение (RO)
    Размер: 1 сектор (512 байт)
    Примечание: поддерживается только 28-битная адресация секторов (28-bit LBA)

Данный журнал содержит информацию о результатах выполнения команд внутренней самодиагностики накопителя. Журнал может хранить до 21 записи. При превышении этого количества, журнал начинает заполняться заново, перезаписывая 1-ю запись 22-й, 2-ю — 23-ей и так далее. В каждой записи журнала сохраняется регистр с номером теста, код статуса выполнения теста, время на момент запуска/прерывания теста, номер текущей контрольной точки (или точки останова) теста, а также LBA-адрес сектора, на котором произошло прерывание/отмена теста.

1.5.6. Extended Self-test Log
    Тип: Расширенный журнал результатов самоконтроля [SMART self-test]
    Вид доступа: только чтение (RO)
    Размер: 1..65,536 секторов (максимум 32 Мбайт)
    Примечание: поддерживается 28/48-битная адресация секторов

Назначение данного журнала аналогично журналу Self-test Log и содержит в себе копию его записей, однако этот журнал имеет иную структуру, которая позволяет реализовать поддержку как 28-битной, так и 48-битной адресации секторов. Максимальное количество записей — 1,179,648.

1.5.7. Streaming Performance Log
    Тип: Журнал параметров производительности потоков [Streaming]
    Вид доступа: только чтение (RO)
    Размер: 1..65,536 секторов (максимум 32 Мбайт)

Данный журнал содержит информацию о переданных накопителю параметров командами управления режимом Automatic Acoustic Management и Typical Host Interface Sector Time (подробнее — см. ATA/ATAPI-6 rev 1e). В журнале сохраняется набор параметров, по которым производится настройка накопителя и перевод в его в режим, когда все операции чтения/записи возможны только специальными командами и передача данных происходит в виде непрерывного потока, для которого гарантированны и учитываются все временные интервалы (на обработку команды, чтение и передачу данных; минимальные/максимальные задержки, время доступа, позиционирования и т.п.). Подробнее о назначении данного вида журналов можно узнать из описания технологии Audio/Video (AV) Streaming Feature.

1.5.8. Write Stream Error Log
    Тип: Журнал ошибок потоковой записи [Streaming]
    Вид доступа: только чтение (RO)
    Размер: 1 сектор (512 байт)
    Примечание: поддерживается 48-битная адресация секторов

Данный журнал содержит информацию о возникших ошибках записи в период работы накопителя в потоковом режиме (streaming mode). В этом журнале сохраняется общее количество подобных ошибок, номер последней ошибки, предыдущее и текущее значения регистров состояния и ошибки, количество и LBA-номер сектора, на котором данная ошибка была зафиксирована. После чтения данного журнала, накопитель сбрасывает счетчик общего количества ошибок и очищает журнал. Содержимое журнала сохраняется только во время работы и очищается в момент следующего включения/выключения накопителя или при поступлении сигнала аппаратного сброса (hardware reset). Максимальное количество сохраняемых ошибок — 31.

1.5.9. Read Stream Error Log
    Тип: Журнал ошибок потокового чтения [Streaming]
    Вид доступа: только чтение (RO)
    Размер: 1 сектор (512 байт)
    Примечание: поддерживается 48-битная адресация секторов

Данный журнал содержит информацию о возникших ошибках чтения в период работы накопителя в потоковом режиме (streaming mode). В этом журнале сохраняется общее количество подобных ошибок, номер последней ошибки, предыдущее и текущее значения регистров состояния и ошибки; количество и LBA-номер сектора, на котором данная ошибка была зафиксирована. После чтения данного журнала, накопитель сбрасывает счетчик общего количества ошибок и очищает журнал. Содержимое журнала сохраняется только во время работы и очищается в момент следующего включения/выключения накопителя или при поступлении сигнала аппаратного сброса (hardware reset). Максимальное количество сохраняемых ошибок — 31.

1.5.10. Delayed LBA Sector Log
    Тип: Vendor Specified [General Purpose Logging]
    Вид доступа: только чтение (RO)
    Размер: устанавливается производителем (VS)
    Примечание: поддерживается 48-битная адресация секторов

Данный журнал содержит LBA-адреса всех секторов, которые были перемещены со своего нормального физического расположения, а также адреса границ недоступной последовательности секторов. Таким образом ведется журнал всех дефектных или нестабильных секторов. Максимальный размер журнала устанавливается производителем. Новое физическое расположение, метод и время доступа к замещенным секторам также устанавливается производителем и не документируется. Запись в данный журнал может быть добавлена в любой момент времени, при условии активности (питания) самого накопителя. Для процесса обновления журнала устанавливается наивысший приоритет и выполнение всех других команд приостанавливается. При этом удалить существующую запись из журнала не возможно. Содержимое журнала сохраняется при циклах включения/выключения накопителя и при поступлении сигнала аппаратного сброса (hardware reset).

1.5.11. ECC Uncorrectable Sector Log
    Тип: Журнал неисправимых ошибок ECC [SMART Recovering]
    Вид доступа: только чтение (RO)
    Размер: 1 сектор (512 байт)
    Примечание: поддерживается только 28-битная адресация секторов (28-bit LBA)

    Данный журнал содержит список LBA-адресов секторов, на которых была зафиксирована и проигнорирована некорректируемая ошибка ECC при выполнении операции READ CONTINUOUS (см. AV feature). При этом, выполнение процедуры автоматического переназначения сбойного сектора (ADR — Automatic Defects Reassigment) накопителем заблокировано. Журнал может содержать до 126 записей.

Примечание. Данный журнал доступен для чтения только при разрешенной операции READ CONTINUOUS. В противном случае накопитель возвратит код ошибки ERR->ABRT, прервет выполнение команды или возвратит пустой журнал. После успешного чтения журнала, в самом накопителе он будет очищен.

1.5.12. Reassigned Sector Log
    [under construction]

1.5.13. Drive Activity Log
    [under construction]

1.5.14. Drive Time Buffer Log
    [under construction]

1.5.15. Host Vendor Specific Log
    Тип: Пользовательские журналы
    Вид доступа: чтение/запись (R/W)
    Размер: максимум 31 журнал по 16 секторов (253,952 байт)
    Примечание: содержание и формат журнала — любое, на усмотрение пользователя

Этот вид журнала может быть использован для хранения произвольных пользовательских данных. Для записи этого журнала используется команда WRITE SMART LOG. Если данный журнал ни разу не был записан, то при чтении накопитель возвратит пустой журнал, заполненный нулями.

1.5.16. Device Vendor Specific Log
    Тип: Технические журналы изготовителя
    Вид доступа: не определен, на усмотрение производителя (VS)
    Размер: максимум 31 журнал по 16 секторов (253,952 байт)
    Примечание: содержание, формат и размеры журнала — на усмотрение производителя

Этот вид журнала предназначен для внутреннего использования фирменными утилитами производителя, для хранения результатов работы встроенных подпрограмм анализа и диагностики состояния накопителя и т.п. Возможность чтения/записи этого вида журнала устанавливается производителем и не не документируется.

Примечание. Новые накопители Seagate (модели Ux и Barracuda ATA) поддерживают и даже реально используют еще три вида журналов SMART, однако их назначение и описание пока не известны.

Встроенные функции самоконтроля
(self-test)

Практически с момента появления стандарта S.M.A.R.T. II, в большинстве накопителей появилась новая функция — внутренняя диагностика и самоконтроль, для углубленного контроля состояния механики накопителя, поверхности дисков и т.п. Для запуска этой функции, в набор команд S.M.A.R.T. была введена новая команда — SMART EXECUTE OFF-LINE IMMEDIATE. Результат работы сохраняется либо в специализированных атрибутах, либо отдельным параметром среди других данных в атрибутах. Если накопитель поддерживает журналы S.M.A.R.T., то результат выполнения тестов сохраняется также в журнале Self-test Log. После выполнения теста, накопитель в обязательном порядке обновляет показания во всех атрибутах и других параметрах. Если во время выполнения внутреннего теста накопитель получит по интерфейсу новую команду, то выполнение теста прерывается и накопитель приступает к обработке поступившей команды.

1.6.1. Методы тестирования
Существует два способа запуска тестов S.M.A.R.T.: автономный (off-line) или монопольный (captive). Результат теста всегда сохраняется накопителем в данных S.M.A.R.T. При автономном запуске накопитель сообщает о успешном завершении команды ДО ее ФАКТИЧЕСКОГО исполнения и только после этого выполняет тест. При этом, по интерфейсу флаг ЗАНЯТО (BSY) не выставляется и накопитель в любой момент готов приступить к выполнению очередной интерфейсной команды, приостанавливая работу теста. Фактически, тест выполняется в фоновом режиме. При запуске теста в монопольном режиме, по интерфейсу выставляется флаг ЗАНЯТО (BSY) и накопитель начинает непосредственное выполнение теста в режиме реального времени. Любая интерфейсная команда во время выполнения этого теста приведет к его прерыванию и остановке, после чего накопитель приступит к обработке поступившей команды.

1.6.2. Разновидности тестов S.M.A.R.T.
 Официально документированы три вида внутренних тестов, однако еще существует набор так называемых «активных» тестов, функциональные особенности которых различны у разных производителей и для широкой публики не документированы.

Название теста

off-line captive
1   Off-line collection +
2   Short Self-test + +
3   Extended Self-test + +
4   Drive Activity test #1..#4 + +

Время тестирования может варьироваться от 1 секунды (Quantum) до 54 минут (Fujitsu MPG3409AT). Поддержка первого теста наиболее вероятна даже в очень старых накопителях 4-5 летней давности.
Второй и третий тесты появились относительно недавно, как дань внедренным сложным технологическим решениям — для полного контроля состояния накопителя пришлось реализовывать более глубокие и точные тесты. Поддержка 4-х «активных» тестов (см. таблицу, п.4) официально не документированна.

Реальный набор выполняемых тестами функций можно рассмотреть на примере тестов, поддерживаемых жесткими дисками Hitachi:

Функция теста Short Self test Extended Self test Off-line Collection
Raw Read Error Rate Test YES YES YES
Write Test YES YES NO
Servo Test YES YES NO
Partial Read Scanning YES NO NO
Full Read Scanning NO YES YES

Этот перечень тестов не является одинаковым для всех накопителей и приведен лишь в качестве примера.

Версия от 03.09.2001.

1 1 Raw Read Error Rate Частота ошибок при чтении данных с пластин диска по вине аппаратной части накопителя. Для всех дисков Seagate, Samsung (начиная с семейства SpinPoint F1 включительно) и Fujitsu 2,5″ это — число внутренних коррекций данных, проведенных до выдачи в интерфейс.
Таким образом, ненулевой параметр на дисках WD и Samsung до SpinPoint F1 (невключительно) и большое значение параметра на дисках Hitachi могут указывать на аппаратные проблемы с диском. На дисках Seagate, Samsung (SpinPoint F1 и новее) и Fujitsu на этот атрибут можно не обращать внимания. 2 2 Throughput Performance Общая (средняя) производительность диска. Параметр не даёт никакой информации пользователю и не говорит ни о какой опасности при любом своём значении. 3 3 Spin-Up Time Время раскрутки шпинделя диска из состояния покоя до номинальной рабочей скорости.
Практически ничего не говорит о здоровье диска. Время разгона может различаться у разных дисков (даже одного и того же производителя) в зависимости от тока раскрутки, массы блинов, номинальной скорости шпинделя и т.п. Винчестеры Fujitsu всегда имеют 1 в этом поле в случае отсутствия проблем с раскруткой шпинделя. 4 4 Number of Spin-Up Times

Start/Stop Count

Полное число циклов включения диска (запуска-остановки шпинделя). У дисков некоторых производителей (например, Seagate) — счётчик включения режима энергосбережения. При оценке здоровья можно не обращать на этот атрибут значительного внимания. 5 5 Reallocated Sectors Count Количество секторов, переназначенных в случае обнаружения винчестером ошибки чтения/записи в резервную область. Поэтому на современных жёстких дисках нельзя увидеть bad-блоки — все они спрятаны в переназначенных секторах.
Чем больше это значение, тем хуже состояние поверхности дисков. При достижении определённого порогового значения (например, 10 ремапов) диск нужно обязательно менять, ведь это означает прогрессирующую деградацию состояния поверхности блинов, головок или другие аппаратные проблемы. 6 6 Read Channel Margin Запас канала чтения. Назначение этого атрибута не документировано — в современных накопителях не используется. 7 7 Seek Error Rate Частота появления ошибок позиционирования блока магнитных головок.
Чем их больше, тем хуже состояние механики и/или поверхности жёсткого диска. Также на значение параметра может повлиять перегрев и внешние вибрации (например, от соседних дисков в корзине).
На дисках Seagate, Samsung SpinPoint F1 и новее и Fujitsu 2,5″ на значение атрибута можно не обращать внимание, на остальных моделях Samsung, а также на всех WD и Hitachi ненулевое значение свидетельствует об аппаратных проблемах. Для винчестеров Hitachi нормальным значением является только 0. 8 8 Seek Time Performance Средняя производительность операций позиционирования магнитных головок. Не даёт никакой информации пользователю и не говорит ни о какой опасности при любом своём значении. 9 9 Power On Hours Count

Power-on Time

Число часов (минут, секунд — в зависимости от производителя), проведённых винчестером во включенном состоянии. В качестве порогового значения для него выбирается паспортное время наработки на отказ (MTBF — mean time between failure). Ничего не говорит о здоровье диска как таковом. 10 0A Spin-Up Retry Count Число повторных попыток раскрутки шпинделя диска до рабочей скорости в случае, если первая попытка оказалась неудачной. О здоровье диска чаще всего не говорит. Если значение атрибута увеличивается, то велика вероятность неполадок с механической частью. Основные причины увеличения параметра — плохой контакт диска с БП или невозможность БП выдать нужный ток в линию питания диска.
В идеале должен быть равен 0. При значении атрибута, равном 1-2, внимания можно не обращать. Если значение больше, в первую очередь следует обратить пристальное внимание на состояние блока питания, его качество, нагрузку на него, проверить контакт винчестера с кабелем питания, проверить сам кабель питания. 11 0B Calibration Retry Count

Recalibration Retries

Количество повторов запросов сброса накопителя (рекалибровки) в случае, если первая попытка была неудачной. Ненулевое, а особенно растущее значение параметра может означать проблемы с диском. 12 0C Power Cycle Count Количество полных циклов включения-выключения диска. Не связан с состоянием диска. 13 0D Soft Read Error Rate Число ошибок при чтении, по вине программного обеспечения, которые не поддались исправлению. Все ошибки имеют не механическую природу и указывают лишь на неправильную размётку/взаимодействие с диском программ или операционной системы. 183 B7 SATA Downshift Error Count Количество неудачных попыток понижения режима SATA. Суть в том, что винчестер, работающий в режимах SATA 3 Гбит/с или 6 Гбит/с, по какой-то причине (например, из-за ошибок) может попытаться понизить скоростной режим (например, SATA 1,5 Гбит/с или 3 Гбит/с соответственно). В случае отказа контроллера изменять режим диск увеличивает значение этого атрибута. Не говорит о здоровье накопителя. 184 B8 End-to-End Error Количество ошибок, возникших при передаче данных через кэш винчестера в случае, если паритет данных между хостом и жестким диском не совпадает. Ненулевое значение указывает на проблемы с диском. 187 BB Reported Uncorrected Sector Count

UNC Error

Количество секторов, которые были признаны кандидатами на переназначение за всю историю жизни диска. Причём если сектор становится кандидатом повторно — значение атрибута также увеличивается. Ненулевое значение атрибута явно указывает на ненормальное состояние диска или на то, что оно было таковым ранее (в сочетании с нулевым значением 197). 188 BC Command Timeout Количество операций, выполнение которых было отменено из-за превышения максимально допустимого времени ожидания отклика.
Такие ошибки могут возникать из-за плохого качества кабелей, контактов, используемых переходников, удлинителей и т.д., а также из-за несовместимости диска с конкретным контроллером SATA/РАТА. Из-за ошибок такого рода возможны «синие экраны смерти» в Windows. Ненулевое значение атрибута говорит о потенциальной «болезни» диска. 189 BD High Fly Writes Количество зафиксированных случаев записи при высоте полета головки выше рассчитанной (скорее всего, из-за внешних воздействий, например вибрации).
Для того, чтобы сказать, почему происходят такие случаи, нужно уметь анализировать логи SMART, которые содержат специфичную для каждого производителя информацию, что на сегодняшний день не реализовано в общедоступном ПО. 190 BE Airflow Temperature Температура воздуха внутри корпуса жёсткого диска. Для дисков Seagate рассчитывается по формуле (100 — HDA Temperature). Для дисков Western Digital — (125 — HDA Temperature). 191 BF G-Sensor Shock Count

Mechanical Shock

Количество критических ускорений (ударных нагрузок), зафиксированных электроникой диска, которым подвергался накопитель и которые превышали допустимые. Обычно это происходит при ударах, падениях и т. п. Атрибут хранит показания встроенного акселерометра, который фиксирует все удары, толчки, падения и даже неаккуратную установку диска в корпус компьютера.
Актуален для мобильных винчестеров. На дисках Samsung на него часто можно не обращать внимания, т.к. они могут иметь очень чувствительный датчик, который, образно говоря, реагирует чуть ли не на движение воздуха от крыльев пролетающей в одном помещении с диском мухи. 192 C0 Power Off Retract Count

Emergency Retry Count

Для разных винчестеров может содержать одну из следующих двух характеристик: либо суммарное количество парковок диска в аварийных ситуациях (по сигналу от вибродатчика, обрыву/понижению питания и т.п.), либо суммарное количество циклов включения/выключения питания диска (характерно для современных WD и Hitachi). 193 C1 Load/Unload Cycle Count Количество полных циклов парковки/распарковки магнитных головок диска. Анализ этого атрибута — один из способов определить, включена ли на диске функция автоматической парковки (например, у дисков Western Digital). Если значение атрибута превосходит (обычно — многократно) значение атрибута 09 (счётчик отработанных часов), то парковка включена. 194 C2 Temperature

HDA Temperature

HDD Temperature

Текущая температура диска, считываемая с датчика, который на разных моделях может располагаться в разных местах. Поле вместе с текущей также может содержать максимальную и минимальную температуры, зафиксированные за всё время эксплуатации винчестера. При работе старайтесь не допускать повышения температуры винчестера выше 50 градусов. 195 C3 Hardware ECC Recovered Число коррекции ошибок аппаратной частью диска (чтение, позиционирование, передача по внешнему интерфейсу). На дисках с SATA-интерфейсом значение нередко ухудшается при повышении частоты системной шины — SATA очень чувствителен к разгону. Особенности, присущие этому атрибуту на разных дисках, полностью соответствуют таковым атрибутов 01 и 07. 196 C4 Reallocation Event Count Количество операций переназначения секторов. В поле «raw value» атрибута хранится общее число попыток переноса информации с переназначенных секторов в резервную область. Учитываются как успешные, так и неуспешные попытки.
Косвенно говорит о здоровье диска. Чем больше значение — тем хуже. Однако нельзя однозначно судить о здоровье диска по этому параметру, не рассматривая другие атрибуты. 197 C5 Current Pending Sector Count Количество секторов, являющихся кандидатами на переназначение в резервную область. Они не были ещё определены как плохие, но скорость считывания с них отличается от чтения стабильного сектора (это так называемые подозрительные или нестабильные секторы). В случае успешного последующего прочтения сектора он исключается из числа кандидатов. В случае повторных ошибочных чтений накопитель пытается восстановить его и выполняет операцию переназначения. Рост значения этого атрибута может свидетельствовать о физической деградации жёсткого диска.
При ненулевом значении нужно обязательно запустить в программах Victoria или MHDD последовательное чтение всей поверхности с опцией remap. Тогда при сканировании диск обязательно наткнётся на плохой сектор и попытается произвести запись в него (в случае Victoria 3.5 и опции Advanced remap диск будет пытаться записать сектор до 10 раз). Таким образом программа спровоцирует «лечение» сектора, и в итоге он будет либо исправлен, либо переназначен. 198 C6 (Offline) Uncorrectable Sector Count Количество секторов-кандидатов на переназначение, обнаруженных при одном из видов самотестирования диска — оффлайн-тестировании, которое диск запускает в простое в соответствии с параметрами, заданными прошивкой. Ненулевое значение говорит о неполадках на диске (точно так же, как и с параметром 197). 199 C7 UltraDMA CRC Error Count Число ошибок, возникающих при передаче данных по по интерфейсному кабелю в режиме UltraDMA или его эмуляции винчестерами SATA (нарушения целостности пакетов и т. п.).
В подавляющем большинстве случаев причинами ошибок становятся некачественный шлейф передачи данных, разгон шин PCI/PCI-E либо плохой контакт в SATA-разъёме на диске или на материнской плате/контроллере. Для Hitachi серий Deskstar 7К3000 и 5К3000 растущий атрибут может говорить о несовместимости диска и SATA-контроллера. Чтобы исправить ситуацию, нужно принудительно переключить такой диск в режим SATA 3 Гбит/с. 200 C8 Write Error Rate

Multi-Zone Error Rate

Частота возникновения ошибок записи. Ненулевое значение говорит о проблемах с диском — в частности, у дисков WD большие цифры могут означать деградирующие головки. 201 C9 Soft Read Error Rate Частота появления ошибок чтения по вине программного обеспечения. 202 CA Data Address Mark Errors Число ошибок Data Address Mark (DAM). Ненулевое значение — это плохо 203 CB Run Out Cancel Количество ошибок ECC. 204 CC Soft ECC Correction Количество ошибок ECC, скорректированных программным способом. 205 CD Thermal Asperity Rate (TAR) Number of thermal asperity errors. 206 CE Flying Height Высота между головкой и поверхностью диска. 207 CF Spin High Current Величина силы тока при раскрутке диска. 208 D0 Spin Buzz Number of buzz routines to spin up the drive. 209 D1 Offline Seek Performance Производительность поиска во время оффлайновых операций. 220 DC Disk Shift Дистанция смещения блока пластин диска относительно оси шпинделя. В основном возникает из-за удара или падения. Единица измерения неизвестна. При увеличении атрибута диск быстро становится неработоспособным. 221 DD G-Sense Error Rate Число ошибок, возникших из-за внешних нагрузок и ударов. Атрибут хранит показания встроенного датчика удара. 222 DE Loaded Hours Время, проведённое блоком магнитных головок между выгрузкой из парковочной области в рабочую область диска и загрузкой блока обратно в парковочную область. 223 DF Load/Unload Retry Count Количество новых попыток выгрузок/загрузок блока магнитных головок в/из парковочной области после неудачной попытки. 224 E0 Load Friction Величина силы трения блока магнитных головок при его выгрузке из парковочной области. 225 E1 Load Cycle Count Количество циклов перемещения блока магнитных головок в парковочную область. 226 E2 Load ‘In’-time Время, за которое привод выгружает магнитные головки из парковочной области на рабочую поверхность диска. 227 E3 Torque Amplification Count Количество попыток скомпенсировать вращающий момент. 228 E4 Power-Off Retract Cycle Количество повторов автоматической парковки блока магнитных головок в результате выключения питания. 230 E6 GMR Head Amplitude Амплитуда дрожания (расстояние повторяющегося перемещения блока магнитных головок). 231 E7 Temperature Температура жёсткого диска. 240 F0 Head Flying Hours Время, затраченное на позиционирования головки. Счётчик может содержать несколько значений в одном поле. 250 FA Read Error Retry Rate Число ошибок во время чтения жёсткого диска. 254 FF Free Fall Event Count Количество ускорений свободного падения диска, которым он подвергался (проще говоря, показывает, сколько раз диск падал).

check-drive-health-macМаленький рассказ об S.M.A.R.T. атрибутах, их важности и понимании. В статье пойдет речь об расшифровке всех smart атрибутов ATA дисков. В предыдущих статьях речь шла об мониторинге BBU и жестких SCSI дисков и их атрибутов под Megaraid контроллером. Теперь хочу немного описать атрибуты обычных АТА дисков на примере Seagate Barracuda ES.2 (ST31000340NS). Так же определим самые важные атрибуты, на которые нужно обращать внимание при мониторинге дисков используя smartctl. Для начала, можно убедиться, что наш диск поддерживает смарт

root@ s01:~# smartctl -i /dev/sda
smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.8.0-29-generic] (local build)
Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net

=== START OF INFORMATION SECTION ===
Model Family:     Seagate Barracuda ES.2
Device Model:     ST31000340NS
Serial Number:    9QJ2ADVC
…
ATA Version is:   8
ATA Standard is:  ATA-8-ACS revision 4
Local Time is:    Fri Feb 21 16:18:35 2014 CET
…
SMART support is: Available - device has SMART capability.
SMART support is: Enabled

Две последние строки свидетельствуют о том, что диск поддерживает smart и можно посмотреть значение всех его атрибутов и их интерпретация будет корректной(интерпретация RAW_VALUE) . В данном случаи тип интерфейса (устройства) не указывался явно (не было указанно атрибут «-d»), по этому smartctl автоматически определил тип устройства и сказал, что «SMART support is: Enabled». Но если используются, к примеру массивы дисков (RAID контроллер), то smartctl может сказать, что смарт не поддерживается:

root@s06:~# smartctl -i /dev/sda
smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.8.0-26-generic] (local build)
Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net

Vendor:               SMC
Product:              SMC2108
Revision:             2.90
User Capacity:        2,996,997,980,160 bytes [2.99 TB]
Logical block size:   512 bytes
Logical Unit id:      0x600304800086531015527e0b0664df74
Serial number:        0074df64060b7e521510538600800403
Device type:          disk
Local Time is:        Fri Feb 21 17:32:27 2014 IST
Device does not support SMART

Но на самом деле, нужно просто знать (или подбирать) какие дисковые массивы используются, и тогда можно получить желаемый результат явно указав тип устройства:

root@s06:~# smartctl -d megaraid,14 -i /dev/sda
smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.8.0-26-generic] (local build)
Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net

Vendor:               SEAGATE
Product:              ST1000NM0001
Revision:             0002
User Capacity:        1,000,204,886,016 bytes [1.00 TB]
Logical block size:   512 bytes
Logical Unit id:      0x5000c50041080343
Serial number:        Z1N0TV980000C2157TYR
Device type:          disk
Transport protocol:   SAS
Local Time is:        Fri Feb 21 17:34:45 2014 IST
Device supports SMART and is Enabled
Temperature Warning Enabled

Также может быть проблема в версии smartctl ибо не все жесткие диски добавляются в базу SMART сразу после выхода в мир нового HDD или RAID контроллера. Или же в BIOS отключено поддержку (нужно включить). Так же может быть проблема в прошивке (firmware) самого жесткого диска. Можете также стоит для начала попытаться включить SMART командой:

root@s01:~# smartctl -s on /dev/sda
smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.8.0-26-generic] (local build)
Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net

=== START OF ENABLE/DISABLE COMMANDS SECTION ===
SMART Enabled.

Следующая, интересующая нас часть вывода покажет суммарный результат проверки статуса здоровья диска (Если не Passed – нужно проводить замену диска). Так же выводится дополнительные характеристики диска и предполагаемое время выполнения коротких и длинных тестов.

root@s01:~# smartctl -Hc /dev/sda
smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.8.0-29-generic] (local build)
Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net

=== START OF READ SMART DATA SECTION ===
SMART overall-health self-assessment test result: PASSED

General SMART Values:
Offline data collection status:  (0x82) Offline data collection activity
                                        was completed without error.
                                        Auto Offline Data Collection: Enabled.
Self-test execution status:      (  41) The self-test routine was interrupted
                                        by the host with a hard or soft reset.
Total time to complete Offline
data collection:                (  634) seconds.
Offline data collection
capabilities:                    (0x7b) SMART execute Offline immediate.
                                        Auto Offline data collection on/off support.
                                        Suspend Offline collection upon new
                                        command.
                                        Offline surface scan supported.
                                        Self-test supported.
                                        Conveyance Self-test supported.
                                        Selective Self-test supported.
SMART capabilities:            (0x0003) Saves SMART data before entering
                                        power-saving mode.
                                        Supports SMART auto save timer.
Error logging capability:        (0x01) Error logging supported.
                                        General Purpose Logging supported.
Short self-test routine
recommended polling time:        (   1) minutes.
Extended self-test routine
recommended polling time:        ( 226) minutes.
Conveyance self-test routine
recommended polling time:        (   2) minutes.
SCT capabilities:              (0x003d) SCT Status supported.
                                        SCT Error Recovery Control supported.
                                        SCT Feature Control supported.
                                        SCT Data Table supported.

В нашем случаи тип устройства определился автоматически и теперь можно вывести самое интересное — список атрибутов.

root@s01:~# smartctl -A /dev/sda
smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.8.0-29-generic] (local build)
Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net

=== START OF READ SMART DATA SECTION ===
SMART Attributes Data Structure revision number: 10
Vendor Specific SMART Attributes with Thresholds:
ID# ATTRIBUTE_NAME          FLAG     VALUE WORST THRESH TYPE      UPDATED  WHEN_FAILED RAW_VALUE
  1 Raw_Read_Error_Rate     0x000f   068   059   044    Pre-fail  Always       -       130449727
  3 Spin_Up_Time            0x0003   099   099   000    Pre-fail  Always       -       0
  4 Start_Stop_Count        0x0032   100   100   020    Old_age   Always       -       23
  5 Reallocated_Sector_Ct   0x0033   100   100   036    Pre-fail  Always       -       4
  7 Seek_Error_Rate         0x000f   063   039   030    Pre-fail  Always       -       549998464474
  9 Power_On_Hours          0x0032   052   052   000    Old_age   Always       -       42335
 10 Spin_Retry_Count        0x0013   100   100   097    Pre-fail  Always       -       0
 12 Power_Cycle_Count       0x0032   100   037   020    Old_age   Always       -       63
184 End-to-End_Error        0x0032   100   100   099    Old_age   Always       -       0
187 Reported_Uncorrect      0x0032   100   100   000    Old_age   Always       -       0
188 Command_Timeout         0x0032   100   093   000    Old_age   Always       -       4295032870
189 High_Fly_Writes         0x003a   100   100   000    Old_age   Always       -       0
190 Airflow_Temperature_Cel 0x0022   076   049   045    Old_age   Always       -       24 (Min/Max 18/26)
194 Temperature_Celsius     0x0022   024   051   000    Old_age   Always       -       24 (0 17 0 0)
195 Hardware_ECC_Recovered  0x001a   041   021   000    Old_age   Always       -       130449727
197 Current_Pending_Sector  0x0012   100   100   000    Old_age   Always       -       0
198 Offline_Uncorrectable   0x0010   100   100   000    Old_age   Offline      -       0
199 UDMA_CRC_Error_Count    0x003e   200   200   000    Old_age   Always       -       0

Используя SMART можно предугадать с довольно большой вероятностью проблемы связанные с:

  • Магнитными головками диска
  • Физическими повреждениями диска
  • Логическими ошибками
  • Механическими проблемами (проблемы привода, системы позиционирования)
  • Подачей питания (платы)
  • Температурой

Расшифруем полученный вывод.

smart-attr
Каждый атрибут имеет группу значений:

  • ID# — идентификационный номер атрибуты (детали здесь). Каждый атрибуты имеет свой уникальный ID, который должен быть одинаковым для всех фирм производителей дисков.
  • ATTRIBUTE_NAME – название атрибута. Так как разные фирмы производители дисков могут называть атрибуты по своему (сокращать, синонимы), лучше всего ориентироваться по ID атрибута.
  • FLAG (Status flag) – каждый атрибут имеет определенный флаг, назначенный фирмой разработчиком диска. В ОС с графическим интерфейсом значения этого флага предоставляется в виде набора буквенных обозначений – w,p,r,c,o,s (расшифровка ниже). И эти наборы предоставляются в виде шестнадцатеричного числа которые вы видели выше.
  1. Warranty: Указывает на жизненно важный атрибут диска и покрывается гарантией. Если этот флаг установлен и значение атрибута с этим флагом достигнет порогового (threshold) значения, в то время, когда диск еще на гарантии, то фирма должна будет заменить диск бесплатно.
  2. Performance: Указывает на атрибут, который представляет показатель производительности диска – не критический.
  3. Error Rate: Атрибут с частотой ошибок.
  4. Count of occurrences: Атрибут-счетчик происшествий.
  5. Online test: Атрибут, который обновляет значения только через on-line тесты. Если не указан, то обновляется через off-line тесты.
  6. Self preserving: Указывает на атрибут который может собирать и сохранять данные о диска, даже если S.M.A.R.T. отключен.
  • Value – Текущее значение атрибута(оценка атрибута диска на основе Raw_value). Низкое значение говорит о быстрой деградации диска или о возможном скором сбое. т.е. чем выше значение Value атрибута, тем лучше. Это значение атрибута нужно сравнивать с пороговым (threshold) значением. Если это критический атрибут и значение ниже порогового — нужно проводить замену диска.
  • Worst – Самое низкое значение атрибута за жизненный цикл диска. Значение может изменяться на протяжении жизни диска, и не должно быть ниже или равным пороговому значению (threshold).
  • Thresh (Threshold) – Пороговое значения атрибута назначенное создателем диска. Значение не меняется за жизненный цикл диска. Если значение Value атрибута станет равным или меньше порогового – появиться уведомление в колонке WHEN_FAILED. И диск нужно заменить.
  • Type – тип атрибута. Может быть критическим (pre-fail), который указывает на предстоящий отказ диска из-за ошибок или не критический, указывающий на достижение конца жизненного цикла диска.
  • Raw_value – Объективное значения атрибута, которое показывается в десятичном формате (вычисляется firmware диска) и известных только производителю единицах (имеет связь с Value, Threshold и Worst значениями).
  • WHEN_FAILED – Указывает на проблемы с атрибутом.

Атрибут диска примет значение failed, в случаи:

Value = f(Raw_value) <= Threshold

Здесь:

  • f(Raw_value) – функция вычисления деградации (уменьшения) значения параметра Value в зависимости от значения Raw_value.

Недостатки такого подхода к вычислению деградации диска:

  • Для каждого производителя дисков и даже модели диска функция f(Raw_value) вычисляется по-разному.
  • Оценка каждого атрибута подсчитывается независимо друг от друга – т.е. игнорируются связи между атрибутами.

Теперь хочу представить таблицу с перечисленными всех атрибутов. Те атрибуты, которые выделены розовым — относятся к атрибутам критическим. К тому же, указано тип параметра в зависимости от величины значения. Т.е. чем больше значение параметра, тем лучше состояние здоровья диска или наоборот.

Чем выше значение Value, тем лучше состояние диска.

Чем ниже значение Value, тем лучше состояние диска.
Критический атрибут В ближайшие время диск выйдет из строя — нужна смена диска

Теперь приступим к атрибутам:

#ID HEX Имя атрибута Лучше если… Описание
01 01 Raw Read Error Rate

Частота ошибок при чтении данных с жёсткого диска. Происхождение их обусловлено аппаратной частью винчестера.
02 02 Throughput Performance

Общая производительность накопителя. Если значение атрибута уменьшается перманентно, то велика вероятность проблем с винчестером.
03 03 Spin-Up Time

Время раскрутки шпинделя из состояния покоя (0 rpm) до рабочей скорости. В поле Raw_value содержится время в миллисекундах/секундах в зависимости от производителя
04 04 Start/Stop Count * Полное число запусков, остановок шпинделя. Иногда в том числе количество включений режима энергосбережения. В поле raw value хранится общее количество запусков/остановок жёсткого диска.
05 05 Reallocated Sectors Count

Число операций переназначения секторов. При обнаружении повреждённого сектора на винчестере, информация из него помечается и переносится в специально отведённую зону, происходит утилизация bad блоков, с последующим консервированием этих мест на диске. Этот процесс называют remapping. Чем больше значение Reallocated Sectors Count, тем хуже состояние поверхности дисков — физический износ поверхности. Поле raw value содержит общее количество переназначенных секторов.
07 07 Seek Error Rate

Частота ошибок при позиционировании блока магнитных головок. Чем больше значение, тем хуже состояние механики, или поверхности жёсткого диска.
08 08 Seek Time Performance

Средняя производительность операции позиционирования. Если значение атрибута уменьшается, то велика вероятность проблем с механической частью.
09 09 Power-On Hours (POH)

Время, проведённое устройством, во включенном состоянии. В качестве порогового значения для него выбирается паспортное время наработки на отказ.
10 0A Spin-Up Retry Count

Число повторных попыток раскрутки дисков до рабочей скорости в случае, если первая попытка была неудачной.
11 0B Recalibration Retries

Количество повторов рекалибровки в случае, если первая попытка была неудачной.
12 0C Device Power Cycle Count Число циклов включения-выключения винчестера.
13 0D Soft Read Error Rate

Число ошибок при чтении, по вине программного обеспечения, которые не поддались исправлению.
187 BB Reported UNC Errors

Неустранимые аппаратные ошибки.
190 BE Airflow Temperature

Температура воздуха внутри корпуса жёсткого диска. Целое значение, либо значение по формуле 100 — Airflow Temperature
191 BF G-sense error rate

Количество ошибок, возникающих в результате ударов.
192 C0 Power-off retract count

Число циклов аварийных выключений.
193 C1 Load/Unload Cycle

Количество циклов перемещения блока головок в парковочную зону.
194 C2 HDA temperature

Показания встроенного термодатчика накопителя.
195 C3 Hardware ECC Recovered

Число коррекции ошибок аппаратной частью диска (ошибок чтения, ошибок позиционирования, ошибок передачи по внешнему интерфейсу).
196 C4 Reallocation Event Count

Число операций переназначения в резервную область, успешные и неудавшиеся попытки.
197 C5 Current Pending Sector Count

Число секторов- кандидатов на перенос в резервную зону. Помечены как не надёжные. При последующих корректных операциях атрибут может быть снят.
198 C6 Uncorrectable Sector Count

Число некорректируемых ошибок при обращении к сектору.
199 C7 UltraDMA CRC Error Count

Число ошибок при передаче данных по внешнему интерфейсу.
200 C8 Write Error Rate /Multi-Zone Error Rate

Общее количество ошибок при заполнения сектора информацией. Показатель качества накопителя.
201 C9 Soft read error rate

Частота появления «программных» ошибок при чтении данных с диска, а не аппаратной части HDD.
202 Ca Data Address Mark errors

Число ошибок адресно помеченной информации (Data Address Mark (DAM)).Если автоматически не корректируется — заменить устройство.
203 CB Run out cancel

Количество ошибок ECC данных, присоединяемые к передаваемому сигналу, позволяющие принимающей стороне определить факт сбоя или исправить несущественную ошибку.
204 CC Soft ECC correction

Количество ошибок ECC, скорректированных программным способом.
205 CD Thermal asperity rate (TAR)

Число ошибок в следствии температурных колебаний.
206 CE Flying height * Высота между головкой и поверхностью диска компьютера.
209 D1 Offline seek performance * Drive’s seek performance during offline operations.
220 DC Disk Shift

Дистанция смещения блока дисков относительно шпинделя. В основном возникает из-за удара или падения.
221 DD G-Sense Error Rate

Число ошибок, возникших из-за внешних нагрузок и ударов. Атрибут хранит показания встроенного crash датчика.
222 DE Loaded Hours * Время, проведённое блоком магнитных головок между выгрузкой из парковочной области в рабочую область диска и загрузкой блока обратно в парковочную область.
223 DF Load/Unload Retry Count * Количество новых попыток выгрузок/загрузок блока магнитных головок винчестера в/из парковочной области после неудачной попытки.
224 E0 Load Friction

Величина силы трения блока магнитных головок при его выгрузке из парковочной области.
225 E1 Load Cycle Count

Число циклов вход-выход в парковочную зону.
226 E2 Load ‘In’-time * Время, за которое привод выгружает магнитные головки из парковочной области на рабочую поверхность диска.
227 E3 Torque Amplification Count

Количество попыток скомпенсировать вращающий момент.
228 E4 Power-Off Retract Cycle

Количество повторов автоматической парковки блока магнитных головок в результате выключения питания.
230 E6 GMR Head Amplitude * Амплитуда «дрожания» (расстояние повторяющегося перемещения блока магнитных головок).
231 E7 Temperature

Температура жёсткого диска.
240 F0 Head flying hours * Время позиционирования головки.
250 FA Read error retry rate

Число ошибок во время чтения жёсткого диска.

Атрибуты дисков нужно смотреть в целом и самостоятельно прогнозировать замену, не только опираясь на smart атрибуты. Нужно дополнительно проводить тесты на бедблоки и запускать fscheck и smart тесты, о которых пойдет речь в следующих статьях.

Возможно, вам также будет интересно:

  • Количество ошибок ecc что это
  • Количество ошибок 0 серега пират
  • Количество букв и звуков в слове ошибка
  • Колин пауэлл признал ошибку вторжения в ирак
  • Колеса домиком форд фокус 2 как исправить ошибку

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии