Расхождения
между величиной какого-либо показателя,
найденного посредством статистического
наблюдения, и действительными его
размерами называются ошибками
наблюдения.В зависимости от
причин возникновения различают ошибки
регистрации и ошибки репрезентативности.
Ошибки
регистрациивозникают в результате
неправильного установления фактов или
ошибочной записи в процессе наблюдения
или опроса. Они бывают случайными или
систематическими. Случайные ошибки
регистрации могут быть допущены как
опрашиваемыми в их ответах, так и
регистраторами. Систематические ошибки
могут быть и преднамеренными, и
непреднамеренными. Преднамеренные –
сознательные, тенденциозные искажения
действительного положения дела.
Непреднамеренные вызываются различными
случайными причинами (небрежность,
невнимательность).
Ошибки
репрезентативности(представительности)
возникают в результате неполного
обследования и в случае, если обследуемая
совокупность недостаточно полно
воспроизводит генеральную совокупность.
Они могут быть случайными и систематическими.
Случайные ошибки репрезентативности
– это отклонения, возникающие при
несплошном наблюдении из-за того, что
совокупность отобранных единиц наблюдения
(выборка) неполно воспроизводит всю
совокупность в целом. Систематические
ошибки репрезентативности – это
отклонения, возникающие вследствие
нарушения принципов случайного отбора
единиц. Ошибки репрезентативности
органически присущи выборочному
наблюдению и возникают в силу того, что
выборочная совокупность не полностью
воспроизводит генеральную. Избежать
ошибок репрезентативности нельзя,
однако, пользуясь методами теории
вероятностей, основанными на использовании
предельных теорем закона больших чисел,
эти ошибки можно свести к минимальным
значениям, границы которых устанавливаются
с достаточно большой точностью.
Ошибки
выборки –разность между
характеристиками выборочной и генеральной
совокупности. Для среднего значения
ошибка будет определяться по формуле
(7.1)
где
Величина
называетсяпредельной ошибкойвыборки.
Предельная
ошибка выборки – величина случайная.
Исследованию закономерностей случайных
ошибок выборки посвящены предельные
теоремы закона больших чисел. Наиболее
полно эти закономерности раскрыты в
теоремах П. Л. Чебышева и А. М. Ляпунова.
Теорему П.
Л. Чебышева применительно к
рассматриваемому методу можно
сформулировать следующим образом: при
достаточно большом числе независимых
наблюдений можно с вероятностью, близкой
к единице (т. е. почти с достоверностью),
утверждать, что отклонение выборочной
средней от генеральной будет сколько
угодно малым. В теореме П. Л. Чебышева
доказано, что величина ошибки не должна
превышать.
В свою очередь величина,
выражающая среднее квадратическое
отклонение выборочной средней от
генеральной средней, зависит от
колеблемости признака в генеральной
совокупностии числа отобранных единицn. Эта
зависимость выражается формулой
,
(7.2)
где
зависит также от способа производства
выборки.
Величину
=
называютсредней ошибкой выборки. В
этом выражении– генеральная дисперсия,n– объем
выборочной совокупности.
Рассмотрим, как
влияет на величину средней ошибки число
отбираемых единиц n. Логически
нетрудно убедиться, что при отборе
большого числа единиц расхождения между
средними будут меньше, т. е. существует
обратная связь между средней ошибкой
выборки и числом отобранных единиц. При
этом здесь образуется не просто обратная
математическая зависимость, а такая
зависимость, которая показывает, что
квадрат расхождения между средними
обратно пропорционален числу отобранных
единиц.
Увеличение
колеблемости признака влечет за собой
увеличение среднего квадратического
отклонения, а следовательно, и ошибки.
Если предположить, что все единицы будут
иметь одинаковую величину признака, то
среднее квадратическое отклонение
станет равно нулю и ошибка выборки
также исчезнет. Тогда нет необходимости
применять выборку. Однако следует иметь
в виду, что величина колеблемости
признака в генеральной совокупности
неизвестна, поскольку неизвестны размеры
единиц в ней. Можно рассчитать лишь
колеблемость признака в выборочной
совокупности. Соотношение между
дисперсиями генеральной и выборочной
совокупности выражается формулой
Поскольку
величина
при достаточно большихnблизка к
единице, можно приближенно считать, что
выборочная дисперсия равна генеральной
дисперсии, т. е.
Следовательно,
средняя ошибка выборки показывает,
какие возможны отклонения характеристик
выборочной совокупности от соответствующих
характеристик генеральной совокупности.
Однако о величине этой ошибки можно
судить с определенной вероятностью. На
величину вероятности указывает множитель
Теорема А.
М. Ляпунова. А. М. Ляпунов доказал,
что распределение выборочных средних
(следовательно, и их отклонений от
генеральной средней) при достаточно
большом числе независимых наблюдений
приближенно нормально при условии, что
генеральная совокупность обладает
конечной средней и ограниченной
дисперсией.
Математически
теорему Ляпуноваможно записать
так:
(7.3)
где
,
(7.4)
где – математическая постоянная;
–предельная ошибка выборки,которая дает возможность выяснить, в
каких пределах находится величина
генеральной средней.
Значения этого
интеграла для различных значений
коэффициента доверия tвычислены и
приводятся в специальных математических
таблицах. В частности, при:
Поскольку tуказывает на вероятность расхождения,
т. е. на вероятность того, на какую
величину генеральная средняя будет
отличаться от выборочной средней, то
это может быть прочитано так: с вероятностью
0,683 можно утверждать, что разность между
выборочной и генеральной средними не
превышает одной величины средней ошибки
выборки. Другими словами, в 68,3 % случаев
ошибка репрезентативности не выйдет
за пределыС вероятностью 0,954 можно утверждать,
что ошибка репрезентативности не
превышает(т. е. в 95 % случаев). С вероятностью
0,997, т. е. довольно близкой к единице,
можно ожидать, что разность между
выборочной и генеральной средней не
превзойдет трехкратной средней ошибки
выборки и т. д.
Логически связь
здесь выглядит довольно ясно: чем больше
пределы, в которых допускается
возможная ошибка, тем с большей
вероятностью судят о ее величине.
Зная выборочную
среднюю величину признака
и предельную ошибку выборки
,
можно определить границы (пределы),
в которых заключена генеральная
средняя
(7.5)
1.
Собственно-случайная выборка–
этот способ ориентирован на выборку
единиц из генеральной совокупности без
всякого расчленения на части или группы.
При этом для соблюдения основного
принципа выборки – равной возможности
всем единицам генеральной совокупности
быть отобранным – используются схема
случайного извлечения единиц путем
жеребьевки (лотереи) или таблицы случайных
чисел. Возможен повторный и бесповторный
отбор единиц
Средняя ошибка
собственно-случайной выборки
представляет собой среднеквадратическое
отклонение возможных значений выборочной
средней от генеральной средней. Средние
ошибки выборки при собственно-случайном
методе отбора представлены в табл. 7.2.
Таблица 7.2
Средняя ошибка |
При отборе |
|
повторном |
бесповторном |
|
Для средней |
|
|
Для доли |
|
|
В таблице
использованы следующие обозначения:
– дисперсия выборочной совокупности;
– численность выборки;
– численность генеральной совокупности;
– выборочная доля единиц, обладающих
изучаемым признаком;
– число единиц, обладающих изучаемым
признаком;
– численность выборки.
Для увеличения
точности вместо множителя
следует
брать множитель
,
но при большой численностиNразличие
между этими выражениями практического
значения не имеет.
Предельная
ошибка собственно-случайной выборки
рассчитывается по формуле
,
(7.6)
где t
– коэффициент доверия зависит от
значения вероятности.
Пример.При
обследовании ста образцов изделий,
отобранных из партии в случайном порядке,
20 оказалось нестандартными. С вероятностью
0,954 определите пределы, в которых
находится доля нестандартной продукции
в партии.
Решение.
Вычислим генеральную долю (Р):
.
Доля нестандартной
продукции:
.
Предельная
ошибка выборочной доли с вероятностью
0,954 рассчитывается по формуле (7.6) с
применением формулы табл. 7.2 для доли:
С вероятностью
0,954 можно утверждать, что доля нестандартной
продукции в партии товара находится в
пределах 12 % ≤ P≤ 28 %.
В практике
проектирования выборочного наблюдения
возникает потребность определения
численности выборки, которая необходима
для обеспечения определенной точности
расчета генеральных средних. Предельная
ошибка выборки и ее вероятность при
этом являются заданными. Из формулы
и формул средних ошибок выборки
устанавливается необходимая численность
выборки. Формулы для определения
численности выборки (n) зависят от
способа отбора. Расчет численности
выборки для собственно-случайной выборки
приведен в табл. 7.3.
Таблица 7.3
Предполагаемый |
Формулы |
|
для средней |
для доли |
|
Повторный |
|
|
Бесповторный |
|
|
2.
Механическая выборка– при этом
методе исходят из учета некоторых
особенностей расположения объектов в
генеральной совокупности, их упорядоченности
(по списку, номеру, алфавиту). Механическая
выборка осуществляется путем отбора
отдельных объектов генеральной
совокупности через определенный интервал
(каждый 10-й или 20-й). Интервал рассчитывается
по отношению,
гдеn– численность выборки,N–
численность генеральной совокупности.
Так, если из совокупности в 500 000 единиц
предполагается получить 2 %-ную выборку,
т. е. отобрать 10 000
единиц, то пропорция отбора составитОтбор
единиц осуществляется в соответствии
с установленной пропорцией через равные
интервалы. Если расположение объектов
в генеральной совокупности носит
случайный характер, то механическая
выборка по содержанию аналогична
случайному отбору. При механическом
отборе применяется только бесповторная
выборка [1, 5–10].
Средняя ошибка
и численность выборки при механическом
отборе подсчитывается по формулам
собственно-случайной выборки (см.
табл. 7.2 и 7.3).
3.
Типическая выборка, при котрой
генеральная совокупность делится по
некоторым существенным признакам на
типические группы; отбор единиц
производится из типических групп. При
этом способе отбора генеральная
совокупность расчленяется на однородные
в некотором отношении группы, которые
имеют свои характеристики, и вопрос
сводится к определению объема выборок
из каждой группы. Может бытьравномерная
выборка– при этом способе из каждой
типической группы отбирается одинаковое
число единицТакой подход оправдан лишь при равенстве
численностей исходных типических групп.
При типическом отборе, непропорциональном
объему групп, общее число отбираемых
единиц делится на число типических
групп, полученная величина дает
численность отбора из каждой типической
группы.
Более совершенной
формой отбора является пропорциональная
выборка. Пропорциональной называется
такая схема формирования выборочной
совокупности, когда численность выборок,
взятых из каждой типической группы в
генеральной совокупности, пропорциональна
численностям, дисперсиям (или комбинированно
и численностям, и дисперсиям). Условно
определяем численность выборки в 100
единиц и отбираем единицы из групп:
– пропорционально
численности их генеральной совокупности
(табл. 7.4). В таблице
обозначено:
Ni– численность типической группы;
dj
– доля (Ni/N);
N– численность
генеральной совокупности;
ni– численность выборки из типической
группы вычисляется:
, (7.7)
n – численность выборки из генеральной
совокупности.
Таблица
7.4
-
Группы
Ni
dj
ni
1
300
0,3
30
2
500
0,5
50
3
200
0,2
20
1000
1,0
100
–
пропорционально среднему квадратическому
отклонению(табл. 7.5).
здесь
i– среднее
квадратическое отклонение типических
групп;
ni
– численность выборки из типической
группы вычисляется по формуле
(7.8)
Таблица
7.5
-
Ni
i
ni
300
5
0,25
25
500
7
0,35
35
200
8
0,40
40
1000
20
1,0
100
–
комбинированно (табл. 7.6).
Численность
выборки вычисляется по формуле
. (7.9)
Таблица 7.6
-
i
iNi
300
5
1500
0,23
23
500
7
2100
0,53
53
200
8
1600
0.24
24
1000
20
6600
1,0
100
При проведении
типической выборки непосредственный
отбор из каждой группы проводится
методом случайного отбора.
Средние ошибки
выборки рассчитываются по формулам
табл. 7.7 в зависимости от способа отбора
из типических групп.
Таблица 7.7
Способ |
Повторный |
Бесповторный |
||
для |
для |
для |
для |
|
Непропорциональный |
|
|
|
|
Пропорциональный объему групп |
|
|
|
|
Пропорциональный |
|
|
|
|
здесь
– средняя из внутригрупповых дисперсий
типических групп;
– доля единиц, обладающих изучаемым
признаком;
– средняя из внутригрупповых дисперсий
для доли;
– среднее квадратическое отклонение
в выборке изi-й типической группы;
– объем выборки из типической группы;
– общий объем выборки;
–
объем типической группы;
– объем генеральной совокупности.
Численность
выборки из каждой типической группы
должна быть пропорциональна среднему
квадратическому отклонению в этой
группе
.Расчет численности
производится по формулам, приведенным
в табл. 7.8.
Таблица 7.8
Повторный |
Бесповторный |
|
Для определения |
|
|
Для определения |
|
|
4. Серийная
выборка– удобена в тех случаях,
когда единицы совокупности объединены
в небольшие группы или серии. При серийной
выборке генеральную совокупность делят
на одинаковые по объему группы – серии.
В выборочную совокупность отбираются
серии. Сущность серийной выборки
заключается в случайном или механическом
отборе серий, внутри которых производится
сплошное обследование единиц. Средняя
ошибка серийной выборки с равновеликими
сериями зависит от величины только
межгрупповой дисперсии. Средние ошибки
сведены в табл. 7.9.
Таблица 7.9
Способ |
Формулы |
|
для |
для |
|
Повторный |
|
|
Бесповторный |
|
|
Здесь
R– число серий в генеральной
совокупности;
r – число
отобранных серий;
– межсерийная (межгрупповая) дисперсия
средних;
– межсерийная (межгрупповая) дисперсия
доли.
При серийном
отборе необходимую численность отбираемых
серий определяют так же, как и при
собственно-случайном методе отбора.
Расчет численности
серийной выборки производится по
формулам, приведенным в табл. 7.10.
Таблица 7.10
Повторный |
Бесповторный |
|
Для |
|
|
Для |
|
|
Пример.В
механическом цехе завода в десяти
бригадах работает 100 рабочих. В целях
изучения квалификации рабочих была
произведена 20 %-ная серийная бесповторная
выборка, в которую вошли две бригады.
Получено следующее распределение
обследованных рабочих по разрядам:
Рабочие |
Разряды рабочих |
Разряды рабочих |
Рабочие |
Разряды |
Разряды |
1 2 3 4 5 |
2 4 5 2 5 |
3 6 1 5 3 |
6 7 8 9 10 |
6 5 8 4 5 |
4 2 1 3 2 |
Необходимо
определить с вероятностью 0,997 пределы,
в которых находится средний разряд
рабочих механического цеха.
Решение.
Определим выборочные средние по
бригадам и общую среднюю как среднюю
взвешенную из групповых средних:
Определим
межсерийную дисперсию по формулам
(5.25):
Рассчитаем
среднюю ошибку выборки по формуле табл.
7.9:
Вычислим
предельную ошибку выборки с вероятностью
0,997:
С вероятностью
0,997 можно утверждать, что средний разряд
рабочих механического цеха находится
в пределах
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Приступим к изучению элементов математической статистики, в которой разрабатываются научно обоснованные методы сбора статистических данных и их обработки.
Пусть требуется изучить множество однородных объектов (это множество называют статистической совокупностью) относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить соответствие детали стандартам, а количественным — контролируемый размер детали.
Лучше всего осуществить сплошное обследование, т. е. изучить каждый объект. Однако в большинстве случаев по разным причинам это сделать невозможно. Препятствовать сплошному обследованию может большое число объектов, их недоступность и т. п. Если, например, нужно знать среднюю глубину воронки при взрыве снаряда из опытной партии, то, проводя сплошное обследование, мы должны будем уничтожить всю партию.
Если сплошное обследование невозможно, то из всей совокупности выбирают для изучения часть объектов.
Статистическая совокупность, из которой отбирают часть объектов, называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называется выборкой.
Число объектов генеральной совокупности и выборки называется соответственно объемом генеральной совокупности и объемом выборки.
Пример. Плоды одного дерева (200 шт.) обследуют на наличие специфического для данного сорта вкуса. Для этого отбирают 10 шт. Здесь 200 —объем генеральной совокупности, а 10 —объем выборки.
Если выборку отбирают по одному объекту, который обследуют и снова возвращают в генеральную совокупность, то выборка называется повторной. Если объекты выборки уже не возвращаются в генеральную совокупность, то выборка называется бесповторной. На практике чаще используется бесповторная выборка. Если объем выборки составляет небольшую долю объема генеральной совокупности, то разница между повторной и бесповторной выборками незначительна
Свойства объектов выборки должны правильно отражать свойства объектов генеральной совокупности, или, как говорят, выборка должна быть репрезентативной (представительной). Считается, что выборка репрезентативна, если все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку, т. е. выбор осуществляется случайно. Например, для того чтобы оценить будущий урожай, можно сделать выборку из генеральной совокупности еще не созревших плодов и исследовать их характеристики (массу, качество и пр.). Если вся выборка будет взята с одного дерева, то она не будет репрезентативной. Репрезентативная выборка должна состоять из случайно выбранных плодов со случайно выбранных деревьев.
Статистическое распределение выборки. Полигон. Гистограмма
Пусть из генеральной совокупности извлечена выборка, причем , наблюдалось
раз,
раз,
раз и
объем выборки. Наблюдаемые значения
называются вариантами, а последовательность вариант, записанная в возрастающем порядке,— вариационным рядом. Числа наблюдений
называют частотами, а их отношения к объему выборки
— относительными частотами. Отметим, что сумма относительных частот равна единице:
Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (непрерывное распределение). В качестве частоты, соответствующей интервалу, принимают сумму частот вариант, попавших в этот интервал.
Заметим, что в теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — соответствие между наблюдаемыми вариантами и их частотами или относительными частотами.
Пример:
Перейдем от частот к относительным частотам в следующем распределении выборки объема n = 20:
Найдем относительные частоты:
Поэтому получаем следующее распределение:
Для графического изображения статистического распределения используются полигоны и гистограммы.
Для построения полигона в декартовых координатах на оси Ох откладывают значения вариант на оси Оу— значения частот
(относительных частот
).
Пример:
Рис. 14 представляет собой полигон следующего распределения:
Полигоном обычно пользуются в случае небольшого количества вариант. В случае большого количества вариант и в случае непрерывного распределения признака чаще строят гистограммы. Для этого интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов шириной h и находят для каждого частичного интервала — сумму частот вариант, попавших в і-й интервал. Затем на этих интервалах как на основаниях строят прямоугольники с высотами
(или
, где n —объем выборки). Площадь i-го частичного прямоугольника равна
(или ). Следовательно, площадь гистограммы равна сумме всех частот (или относительных частот), т. е. объему выборки (или единице).
Пример:
Рис. 15 показывает гистограмму непрерывного распределения объема n =100, заданного следующей таблицей:
Оценки параметров генеральной совокупности по ее выборке
Выборка как набор случайных величин
Пусть имеется некоторая генеральная совокупность, каждый объект которой наделен количественным признаком X. При случайном извлечении объекта из генеральной совокупности становится известным значение х признака X этого объекта. Таким образом, мы можем рассматривать извлечение объекта из генеральной совокупности как испытание, X—как случайную величину, а х —как одно из возможных значений X.
Допустим, что из теоретических соображений удалось установить, к какому типу распределений относится признак X. Естественно, возникает задача оценки (приближенного определения) параметров, которыми описывается это распределение. Например, если известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить, т. е. приближенно найти математическое ожидание и среднее квадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение.
Обычно в распоряжении исследователя имеются лишь данные выборки генеральной совокупности, например значения количественного признака полученные в результате n наблюдений (здесь и далее наблюдения предполагаются независимыми). Через эти данные и выражают оцениваемый параметр.
Опытные значения признака X можно рассматривать и как значения разных случайных величин с тем же распределением, что и X, и, следовательно, с теми же числовыми характеристиками, которые имеет X. Значит,
Величины
можно считать независимыми в силу независимости наблюдений. Значения
в этом случае называются реализациями случайных величин
Отсюда и из предыдущего следует, что найти оценку неизвестного параметра — это значит найти функцию от наблюдаемых случайных величин
которая и дает приближенное значение оцениваемого параметра.
Генеральная и выборочная средние. Методы их расчета
Пусть изучается дискретная генеральная совокупность объема N относительно количественного признака X.
Определение:
Генеральной средней (или а) называется среднее арифметическое значений признака генеральной совокупности.
Если все значения признака генеральной совокупности объема N различны, то
Если же значения признака имеют соответственно частоты
причем
то
или
Как уже отмечалось (п. 1), извлечение объекта из генеральной совокупности есть наблюдение случайной величины X.
Пусть все значения различны. Так как каждый объект может быть извлечен с одной и той же вероятностью 1/N, то
т. е.
Такой же итог следует, если значения имеют соответственно частоты
В случае непрерывного распределения признака X по определению полагают
Пусть для изучения генеральной совокупности относительно количественного признака X произведена выборка объема n.
Определение:
Выборочной средней , называется среднее арифметическое значений признака выборочной совокупности.
Если все значения признака выборки объема n различны, то
Если же значения признака имеют соответственно частоты
причем
, то
или
Пример:
Выборочным путем были получены следующие данные о массе 20 морских свинок при рождении (в г): 30, 30, 25, 32, 30, 25, 33, 32, 29, 28^27, 36, 31, 34, 30, 23, 28, 31, 36, 30. Найдем выборочную среднюю
Согласно формуле (4.4), имеем:
Итак,
Далее, не уменьшая общности рассуждений, будем считать значения признака различными.
Разумеется, выборочная средняя для различных выборок того же объема n из той же генеральной совокупности будет получаться, вообще говоря, различной. И это не удивительно — ведь извлечение і-го по счету объекта есть наблюдение случайной величины а их среднее арифметическое
есть тоже случайная величина.
Таким образом, всевозможные получающиеся выборочные средние есть возможные значения случайной величины , которая называется выборочной средней случайной величиной.
Найдем , пользуясь тем, что
(см. п. 1).
С учетом свойств математического ожидания (см. гл. II) получаем:
Итак, (математическое ожидание выборочной средней) совпадает с а (генеральной средней).
Теперь найдем Так как
(п. 1) и
независимы, то, согласно свойствам дисперсии (см. гл. II), получаем
T. e.
Наконец, отметим, что если варианты —большие числа, то для облегчения вычисления выборочной средней применяют следующий прием. Пусть С — константа.
Так как
то формулу (4.3) можно преобразовать к виду
За константу С (так называемый ложный нуль) берут некоторое среднее значение между наименьшим и наибольшим значениями х, (і- 1, 2, …, n).
Пример:
Имеется выборка:
Требуется найти
Возьмем С =72,00 и вычислим разности
Их сумма: их среднее арифметическое
Выборочная средняя
Генеральная и выборочная дисперсии
Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной совокупности вокруг своего среднего значения, вводят следующую характеристику — генеральную дисперсию.
Определение:
Генеральной дисперсией D, называется среднее арифметическое квадратов отклонений значений признака X генеральной совокупности от генеральной средней
Если все значения признака генеральной совокупности объема N различны, то
Если же значения признака имеют соответственно
частоты причем
то
Пример:
Генеральная совокупность задана таблицей распределения:
Найдем генеральную дисперсию.
Согласно формулам (4.1) и (4.7), имеем:
Генеральным средним квадратическим отклонением (стандартом) называется
Пусть все значения различны.
Найдем дисперсию признака X, рассматриваемого как случайная величина:
Так как (см. п. 2), то
т. е.
Таким образом, дисперсия D(X) равна
Такой же итог можно получить, если значения имеют соотвественно частоты
В случае непрерывного распределения признака X по определению полагают
С учетом формулы (4.8) формула (4.5) (п. 2) перепишется в виде
откуда или
Величина
называется средней квадратической ошибкой.
Для того чтобы охарактеризовать рассеяние наблюдаемых значений количественного признака выборки вокруг своего среднего значения вводят выборочную дисперсию.
Определение:
Выборочной дисперсией , называется среднее арифметическое квадратов отклонений наблюдаемых значений признака X от выборочной средней
Если все значения признака выборки объема n различны, то
Если же значения признака имеют соответственно частоты
причем
то
Пример:
Пусть выборочная совокупность задана таблицей распределения:
Найдем выборочную дисперсию. Согласно формулам (4.4) и (4.10), имеем:
Выборочным средним квадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии:
В условиях примера 2 получаем, что
Далее, не уменьшая общности рассуждений, будем считать значения признака различными.
Выборочную дисперсию, рассматриваемую нами как случайная величина, будем обозначать
Теорема:
Математическое ожидание выборочной дисперсии равно т.е.
Доказательство:
С учетом свойств математического ожидания (см. гл. II) получаем
Вычислим одно слагаемое Имеем
Вычислим по отдельности эти математические ожидания.
Согласно свойству I дисперсии (см. гл. И) и формулам (4.2), (4.8) имеем
Далее, с учетом свойства 4 математического ожидания (см. гл. II)
но слагаемое этой суммы, у которого второй индекс равен і, т.е. , равно
У всех остальных слагаемых
индексы разные. Поэтому в силу независимости
(см. гл. II)
Так как имеется n-1 таких слагаемых, то
В силу свойства 1 дисперсии (см. гл. П) получаем
Нами уже найден (см. пп. 2 и 3):
Поэтому
Таким образом,
и не зависит от индекса суммирования і. Поэтому
Что и требовалось доказать.
В заключение этого пункта отметим, что если варианты — большие числа, то для облегчения вычисления выборочной дисперсии
, формулу (4.9) преобразуют к следующему виду:
где С—ложный нуль.
Действительно, с учетом формулы (4.3) имеем
откуда
Пример:
Для выборки, указанной в примере 2 из п. 2, найдем (ложный нуль остается прежним С= 72,00)
Наконец, согласно формуле (4.11)
Оценки параметров распределения
Одной из задач статистики является оценка параметров распределения случайной величины X по данным выборки. При этом в теоретических рассуждениях считают, что генеральная совокупность бесконечна. Это делается для того, чтобы можно было переходить к пределу при где n — объем выборки. Для оценки параметров распределения X из данных выборки составляют выражения, которые должны служить оценками неизвестных параметров. Например,
(см. п. 2) является оценкой генеральной средней, а
(см. п. 3) — оценкой генеральной дисперсии
Обозначим через
оцениваемый параметр, через
— оценку этого параметра
является выражением^ составленным из
(см. п. 1)]. Для того чтобы оценка
давала хорошее приближение, она должна удовлетворять определенным требованиям. Укажем эти требования.
Несмещенной называют оценку математическое ожидание которой равно оцениваемому параметру
, т. е.
в противном случае оценка называется смещенной.
Пример:
Оценка является несмещенной оценкой генеральной средней а, так как
(см. п. 2).
Пример:
Оценка является смещенной оценкой генеральной дисперсии
так как, согласно установленной выше теореме (см. п. 3),
Пример:
Наряду с выборочной дисперсией рассматривают еще так называемую исправленную дисперсию
которая является также оценкой генеральной дисперсии. Для
с учетом установленной выше теоремы (см. п. 3) имеем
Таким образом, оценка в отличие от оценки
является несмещенной оценкой генеральной дисперсии. Явное выражение для
имеет вид
T. e.
Естественно в качестве приближенного неизвестного параметра брать несмещенные оценки для того, чтобы не делать систематической ошибки в сторону завышения или занижения.
Состоятельной называют такую оценку параметра
, что для любого наперед заданного числа
вероятность
при
стремится к единице*. Это значит, что при достаточно больших n можно с вероятностью, близкой к единице, т. е. почти наверное, утверждать, что оценка
отличается от оцениваемого параметра
меньше, чем на
Очевидно, такому требованию должна удовлетворять всякая оценка, пригодная для практического использования.
Заметим, что несмещенная оценка будет состоятельной, если при
дисперсия стремится к нулю:
Это следует из неравенства Чебышева ((2.33) см. § 2.8, п. 1).
Пример:
Как было установлено (см. п. 3), . Отсюда следует, что несмещенная оценка
является и состоятельной, так как
Можно показать, что несмещенная оценка является также состоятельной. Поэтому в качестве оценки генеральной дисперсии принимают исправленную дисперсию. Заметим, что оценки
отличаются множителем
, который стремится к 1 при
. На практике
не различают при n > 30.
Для оценки генерального среднего квадратического отклонения используют исправленное среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:
Левые части формул (4.12), (4.13), в которых случайные величины заменены их реализациями
выборочной средней
будем обозначать соответственно через
и s
Отметим, что если варианты — большие числа, то для облегчения вычисления
формулу для
аналогично формуле (4.9) преобразуют к виду
где С—ложный нуль.
Оценки, обладающие свойствами несмещенности и состоятельности, при ограниченном числе опытов могут отличаться дисперсиями.
Ясно, что чем меньше дисперсия оценки, тем меньше вероятность грубой ошибки при определении приближенного значения параметра. Поэтому необходимо, чтобы дисперсия оценки была минимальной. Оценка, обладающая таким свойством, называется эффективной.
Из отмеченных требований, предъявляемых к оценке, наиболее важными являются требования несмещенности и состоятельности.
Пример:
С плодового дерева случайным образом отобрано 10 плодов. Их массы (в граммах) записаны в первой колонке приведенной ниже таблицы. Обработаем статистические данные выборки. Для вычисления
и s пo формулам (4.6) и (4.14) введем ложный нуль С=250 и все необходимые при этом вычисления сведем в указанную таблицу:
Следовательно,
Отсюда
Итак, оценка генеральной средней массы плода равна 243 г со средней квадратической ошибкой 9 г.
Оценка генерального среднего квадратического отклонения массы плода равна 28 г.
Пример:
Через каждый час измерялось напряжение в электросети. Результаты измерений (в вольтах) представлены в следующей таблице:
Найти оценки для математического ожидания и дисперсии результатов измерений. Оценки для математического ожидания и дисперсии найдем по формулам (6) и (14), положив С=220. Все необходимые вычисления приведены в нижеследующей таблице:
Следовательно,
Доверительные интервалы для параметров нормального распределения
Пусть — оцениваемый параметр,
— его оценка, составленная из
Если известно, что оценка является несмещенной и состоятельной, то по данным выборки вычисляют значение
и считают его приближением истинного значения
. При этом среднее квадратическое отклонение (если его вообще вычисляют) оценивает порядок ошибки. Такие оценки называются точечными. Например, в предыдущем параграфе речь шла о точечных оценках генеральной средней и генеральной дисперсии. В общем случае, когда о распределении признака X ничего неизвестно, это уже немало.
Если же о распределении имеется какая-либо информация, то можно сделать больше.
Здесь речь будет идти об оценке параметров а и случайной величины, имеющей нормальное распределение. Это очень важный случай. Например (см. § 2.7), результат измерения имеет нормальное распределение. В этом случае становится возможным применять так называемое интервальное оценивание, к изложению которого мы и переходим.
Пусть — некоторое число. Если выполняется неравенство
что можно записать в виде
то говорят, что интервал
покрывает параметр
. Однако невозможно указать оценку
такую, чтобы событие
было достоверным, поэтому мы будем говорить о вероятности этого события. Число
называется точностью оценки
Определение:
Надежностью (доверительной вероятностью) оценки параметра
0 для заданного
называется вероятность
того, что интервал
покроет параметр
, т. е.
Заметим, что после того, как по данным выборки вычислена оценка , событие
становится или достоверным, или невозможным, так как интервал
или покрывает
, или нет. Но дело в том, что параметр
нам неизвестен. Поэтому мы называем надежностью
уже вычисленной оценки
вероятность того, что интервал
, найденный для произвольной выборки, покроет
. Если мы сделаем много выборок объема n и для каждой из них построим интервал
, то доля тех выборок, чьи интервалы покроют
, равна
.
Иными словами, есть мера нашего доверия вычисленной оценке
Ясно, что, чем меньше число , тем меньше надежность
.
Определение:
Доверительным интервалом называется найденный по данным выборки интервал , который покрывает параметр
с заданной надежностью
.
Надежность обычно принимают равной 0,95 или 0,99, или 0,999.
Конечно, нельзя категорически утверждать, что найденный доверительный интервал покрывает параметр . Но в этом можно быть уверенным на 95% при
= 0,95, на 99% при
=0,99 и т. д. Это значит, что если сделать много выборок, то для 95% из них (если, например,
= 0,95) вычисленные доверительные интервалы действительно покроют
.
Доверительный интервал для математического ожидания при известном
Доверительный интервал для математического ожидания при известном
В некоторых случаях среднее квадратическое отклонение о ошибки измерения (а вместе с нею и самого измерения) бывает известно. Например, если измерения осуществляются одним и тем же прибором при одних и тех же условиях.
Итак, пусть случайная величина X распределена нормально с параметрами а и , причем
известно. Построим доверительный интервал, покрывающий неизвестный параметр а с заданной надежностью
. Данные выборки есть реализации случайных величин
имеющих нормальное распределение с параметрами а и
(§ 4.2, п. 1). Оказывается, что и выборочная средняя случайная величина
тоже имеет нормальное распределение (это мы примем без доказательства). При этом (см. § 4.2, пп. 2, 3)
Потребуем, чтобы выполнялось соотношение где
—заданная надежность. Пользуясь формулой (2.27) (§ 2.7, п. 2), получим
или
где
Найдя из равенства (4.15) можем написать
Так как Р задана и равна , то окончательно имеем (для получения рабочей формулы выборочную среднюю заменяем на
):
Смысл полученного соотношения таков: с надежностью у можно утверждать, что доверительный интервал покрывает неизвестный параметр а; точность оценки
. Здесь число t определяется из равенства
(оно следует из
по таблице приложения 3.
Как уже упоминалось, надежность обычно принимают равной или 0,95 или 0,99, или 0,999.
Пример:
Признак X распределен в генеральной совокупности нормально с известным = 0,40. Найдем по данным выборки доверительный интервал для а с надежностью
= 0,99, если n = 20,
= 6,34.
Для находим по таблице приложения 3
t=2,58. Следовательно, . Границы доверительного интервала 6,34 — 0,23 = 6,11 и 6,34 + 0,23 = 6,57. Итак, доверительный интервал (6,11; 6,57) покрывает а с надежностью 0,99.
Доверительный интервал для математического ожидания при неизвестном
Доверительный интервал для математического ожидания при неизвестном .
Пусть случайная величина X имеет нормальное распределение с неизвестными нам параметрами а и . Оказывается, что случайная величина (ее возможные значения будем обозначать через t)
где n —объем выборки; — выборочная средняя; S—исправленное среднее квадратическое отклонение, имеет распределение, не зависящее от а и
. Оно называется распределением Стьюдента*.
Плотность вероятности распределения Стьюдента дается формулой
где коэффициент зависит от объема выборки.
Потребуем, чтобы выполнялось соотношение
где —заданная надежность.
Так как S(t, n) — четная функция от t, то, пользуясь формулой
(2.15) (см. § 2.5), получим
Отсюда
Следовательно, приходим к утверждению: с надежностью можно утверждать, что доверительный интервал
покрывает неизвестный параметр а, точность оценки
-. Здесь случайные величины
и S заменены неслучайными величинами
и s, найденными по выборке.
В приложении 4 приведена таблица значений для различных значений n и обычно задаваемых значений надежности.
Заметим, что при распределение Стьюдента практически не отличается от нормированного нормального распределения
(см. § 2.7, п. 2). Это связано с тем, что
Пример. Признак X распределен в генеральной совокупности нормально. Найдем доверительный интервал для с надежностью
=0,99, если
Для надежности
=0,99 и n = 20 находим по таблице приложения 4
Следовательно,
. Концы доверительного интервала 6,34-0,26 =
= 6,08 и 6,34 + 0,26 = 6,60. Итак, доверительный интервал (6,08; 6,60) покрывает с надежностью 0,99.
Доверительный интервал для среднего квадратического отклонения
Для нахождения доверительного интервала для среднего квадратического отклонения будем использовать следующее предложение, устанавливаемое аналогично двум предыдущим (пп. 2 и 3).
С надежностью можно утверждать, что доверительный интервал
покрывает неизвестный параметр
; точность оценки
В приложении 5 приведена таблица значений для различных значений n и обычно задаваемых значений надежности
.
Пример:
Признак X распределен в генеральной совокупности нормально. Найдем доверительный интервал для с надежностью
=0,95, если n = 20, s = 0,40.
Для надежности =0,95 и n = 20 находим в таблице приложения 5 q = 0,37. Далее, sq = 0,40 0,37 = 0,15. Границы доверительного интервала 0,40-0,15 = 0,25 и 0,40 + 0,15 = 0,55. Итак, доверительный интервал (0,25; 0,55) покрывает
с надежностью 0,95.
Пример:
На ферме испытывалось влияние витаминов на прибавку в массе телят. С этой целью было осмотрено 20 телят одного возраста. Средняя масса их оказалась равной 340 кг, а «исправленное» среднее квадратическое отклонение — 20 кг.
Определим: 1) доверительный интервал для математического ожидания а с надежностью 0,95; 2) доверительный интервал для среднего квадратического отклонения с той же надежностью.
При решении задачи будем исходить из предположения, что данные пробы взяты из нормальной генеральной совокупности.
Решение:
1) Согласно условиям задачи, n = 20.
Пользуясь распределением Стьюдента, для надежности у=0,95 и n = 20 находим в таблице приложения 4 Следовательно,
Границы доверительного интервала 340-9,4 =
= 330,6 и 340 + 9,4 = 349,4. Итак, доверительный интервал (330,6; 349,4) покрывает а с надежностью 0,95.
Можно считать, что в данном случае истинная масса измерена 9 4 достаточно точно (отклонение порядка ).
2) Для надежности у =0,95 и n = 20 находим в таблице приложения 5 q = 0,37. Далее, sq = 20 * 0,37 = 7,4. Границы доверительного интервала 20 — 7,4 = 12,6 и 20 + 7,4 = 27,4. Таким образом, 12,6 < < 27,4, откуда можно заключить, что
определено неудовлетворительно (отклонение порядка
— почти половина!). Чтобы сузить доверительный интервал при той же надежности, необходимо увеличить число проб n.
Примечание. Выше предполагалось, что q<1. Если q> 1, то, учитывая, что >0, получаем 0<
<s + sq. Значения q и в этом случае определяются по таблице приложения 5.
Пример:
Признак X генеральной совокупности распределен нормально. По выборке объема n = 10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найдем доверительный интервал для с надежностью 0,999.
Для надежности у = 0,999 и n= 10 по таблице приложения 5 находим q=1,80.
Следовательно, искомый доверительный интервал таков’
или
Оценка истинного значения измеряемой величины
Пусть проводится n независимых равноточных измерений* некоторой физической величины, истинное значение а которой неизвестно. Будем рассматривать результаты отдельных измерений как случайные величины Эти величины независимы (измерения независимы), имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии
(измерения равноточны) и распределены нормально (такое допущение подтверждается опытом). Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов в пп. 2 и 3 настоящего параграфа, выполняются, следовательно, мы вправе использовать полученные в них предложения. Так как обычно
неизвестно, следует пользоваться предложением, найденным в п. 3 данного параграфа.
Пример:
По данным девяти независимых равноточных измерений физической величины найдены среднее арифметическое результатов отдельных измерений и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение а измеряемой величины с надежностью у = 0,99.
Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к оценке математического ожидания (при неизвестном ) при помощи доверительного интервала
покрывающего а с заданной надежностью у=0,99.
Пользуясь таблицей приложения 4 по у=0,99 и n = 9, находим
Найдем точность оценки:
Границы доверительного интервала
и
Итак, с надежностью у=0,99 истинное значение измеренной величины а заключено в доверительном интервале 36,719<а< 47,919.
Оценка точности измерений
В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки
используют «исправленное» среднее квадратическое отклонение s. Поскольку обычно результаты измерений независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то утверждение, приведенное в п. 4, применимо для оценки точности измерений.
Пример:
По 16 независимым равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s=0,4. Найдем точность измерений с надежностью у = 0,99.
Как отмечено выше, точность измерений характеризуется средним квадратическим отклонением о случайных ошибок измерений. Поэтому задача сводится к отысканию доверительного интервала покрывающего
с заданной надежностью у=0,99 (см. п. 4). По таблице приложения 5 по у = 0,99 и n=16 найдем q = 0,70. Следовательно, искомый доверительный интервал таков:
или
Решение заданий и задач по предметам:
- Теория вероятностей
- Математическая статистика
Дополнительные лекции по теории вероятностей:
- Случайные события и их вероятности
- Случайные величины
- Функции случайных величин
- Числовые характеристики случайных величин
- Законы больших чисел
- Статистические оценки
- Статистическая проверка гипотез
- Статистическое исследование зависимостей
- Теории игр
- Вероятность события
- Теорема умножения вероятностей
- Формула полной вероятности
- Теорема о повторении опытов
- Нормальный закон распределения
- Определение законов распределения случайных величин на основе опытных данных
- Системы случайных величин
- Нормальный закон распределения для системы случайных величин
- Вероятностное пространство
- Классическое определение вероятности
- Геометрическая вероятность
- Условная вероятность
- Схема Бернулли
- Многомерные случайные величины
- Предельные теоремы теории вероятностей
- Оценки неизвестных параметров
Калькулятор для расчета достаточного объема выборки
Калькулятор ошибки выборки для доли признака
Калькулятор ошибки выборки для среднего значения
Калькулятор значимости различий долей
Калькулятор значимости различий средних
1. Формула (даже две)
Бытует заблуждение, что чем больше объем генеральной совокупности, тем больше должен быть объем выборки маркетингового исследования. Это отчасти так, когда объем выборки сопоставим с размером генеральной совокупности. Например, при опросах организаций (B2B).
Если речь идет об исследовании жителей городов, то не важно, Москва это или Рязань – оптимальный объем выборки будет одинаков в обоих городах. Этот принцип следует из закона больших чисел и применим, только если выборка простая случайная.
На рис.1. пример выборки 15000 человек (!) при опросе в муниципальном районе. Возможно, от численности населения взяли 10%?
Размер выборки никогда не рассчитывается как процент от генеральной совокупности!
Рис.1. Размер выборки 15000 человек, как реальный пример некомпетентности (или хуже).
В таких случаях для расчета объема выборки используется следующая формула:
где
n – объем выборки,
Z – коэффициент, зависящий от выбранного исследователем доверительного уровня,
p – доля респондентов с наличием исследуемого признака,
q = 1 – p – доля респондентов, у которых исследуемый признак отсутствует,
∆ – предельная ошибка выборки.
Доверительный уровень – это вероятность того, что реальная доля лежит в границах полученного доверительного интервала: выборочная доля (p) ± ошибка выборки (Δ). Доверительный уровень устанавливает сам исследователь в соответствии со своими требованиями к надежности полученных результатов. Чаще всего применяются доверительные уровни, равные 0,95 или 0,99. В маркетинговых исследованиях, как правило, выбирается доверительный уровень, равный 0,95. При этом уровне коэффициент Z равен 1,96.
Значения p и q чаще всего неизвестны до проведения исследования и принимаются за 0,5. При этом значении размер ошибки выборки максимален.
Допустимая предельная ошибка выборки выбирается исследователем в зависимости от целей исследования. Считается, что для принятия бизнес-решений ошибка выборки должна быть не больше 4%. Этому значению соответствует объем выборки 500-600 респондентов. Для важных стратегических решений целесообразно минимизировать ошибку выборки.
Рассмотрим кривую зависимости ошибки выборки от ее объема (Рис.2).
Рис.2. Зависимость ошибки выборки от ее объема при 95% доверительном уровне
Как видно из диаграммы, с ростом объема выборки значение ошибки уменьшается все медленнее. Так, при объеме выборки 1500 человек предельная ошибка выборки составит ±2,5%, а при объеме 2000 человек – ±2,2%. То есть, при определенном объеме выборки дальнейшее его увеличение не дает значительного выигрыша в ее точности.
Подходы к решению проблемы:
Случай 1. Генеральная совокупность значительно больше выборки:
Случай 2. Генеральная совокупность сопоставима с объемом выборки: (см. раздел исследований B2B)
где
n – объем выборки,
N – объем генеральной совокупности,
Z – коэффициент, зависящий от выбранного исследователем доверительного уровня,
p – доля респондентов с наличием исследуемого признака,
q = 1 – p – доля респондентов, у которых исследуемый признак отсутствует, (значения p и q обычно принимаются за 0,5, поскольку точно неизвестны до проведения исследования)
∆ – предельная ошибка выборки.
Например,
рассчитаем ошибку выборки объемом 1000 человек при 95% доверительном уровне, если генеральная совокупность значительно больше объема выборки:
Ошибка выборки = 1,96 * КОРЕНЬ(0,5*0,5/1000) = 0,031 = ±3,1%
При расчете объема выборки следует также учитывать стоимость проведения исследования. Например, при цене за 1 анкету 200 рублей стоимость опроса 1000 человек составит 200 000 рублей, а опрос 1500 человек будет стоить 300 000 рублей. Увеличение затрат в полтора раза сократит ошибку выборки всего на 0,6%, что обычно неоправданно экономически.
2. Причины «раздувать» выборку
Анализ полученных данных обычно включает в себя и анализ подвыборок, объемы которых меньше основной выборки. Поэтому ошибка для выводов по подвыборкам больше, чем ошибка по выборке в целом. Если планируется анализ подгрупп / сегментов, объем выборки должен быть увеличен (в разумных пределах).
Рис.3 демонстрирует данную ситуацию. Если для исследования авиапассажиров используется выборка численностью 500 человек, то для выводов по выборке в целом ошибка составляет 4,4%, что вполне приемлемо для принятия бизнес-решений. Но при делении выборки на подгруппы в зависимости от цели поездки, выводы по каждой подгруппе уже недостаточно точны. Если мы захотим узнать какие-либо количественные характеристики группы пассажиров, совершающих бизнес-поездку и покупавших билет самостоятельно, ошибка полученных показателей будет достаточно велика. Даже увеличение выборки до 2000 человек не обеспечит приемлемой точности выводов по этой подвыборке.
Рис.3. Проектирование объема выборки с учетом необходимости анализа подвыборок
Другой пример – анализ подгрупп потребителей услуг торгово-развлекательного центра (Рис.4).
Рис.4. Потенциальный спрос на услуги торгово-развлекательного центра
При объеме выборки в 1000 человек выводы по каждой отдельной услуге (например, социально-демографический профиль, частота пользования, средний чек и др.) будут недостаточно точными для использования в бизнес планировании. Особенно это касается наименее популярных услуг (Таблица 1).
Таблица 1. Ошибка по подвыборкам потенциальных потребителей услуг торгово-развлекательного центра при выборке 1000 чел.
Чтобы ошибка в самой малочисленной подвыборке «Ночной клуб» составила меньше 5%, объем выборки исследования должен составлять около 4000 человек. Но это будет означать 4-кратное удорожание проекта. В таких случаях возможно компромиссное решение:
- увеличение выборки до 1800 человек, что даст достаточную точность для 6 самых популярных видов услуг (от кинотеатра до парка аттракционов);
- добор 200-300 пользователей менее популярных услуг с опросом по укороченной анкете (см. Таблицу 2).
Таблица 2. Разница в ошибке выборки по подвыборкам при разных объемах выборки.
При обсуждении с исследовательским агентством точности результатов планируемого исследования рекомендуется принимать во внимание бюджет, требования к точности результатов в целом по выборке и в разрезе подгрупп. Если бюджет не позволяет получить информацию с приемлемой ошибкой, лучше пока отложить проект (или поторговаться).
КАЛЬКУЛЯТОРЫ ДЛЯ РАСЧЕТА СТАТИСТИЧЕСКИХ ПОКАЗАТЕЛЕЙ И ОПРЕДЕЛЕНИЯ ЗНАЧИМОСТИ РАЗЛИЧИЙ:
КАЛЬКУЛЯТОР ДЛЯ РАСЧЕТА
ДОСТАТОЧНОГО ОБЪЁМА ВЫБОРКИ
Доверительный уровень:
Ошибка выборки (?):
%
Объём генеральной совокупности (N):
(можно пропустить, если больше 100 000)
РЕЗУЛЬТАТ
Один из важных вопросов, на которые нужно ответить при планировании исследования, — это оптимальный объем выборки. Слишком маленькая выборка не сможет обеспечить приемлемую точность результатов опроса, а слишком большая приведет к лишним расходам.
Онлайн-калькулятор объема выборки поможет рассчитать оптимальный размер выборки, исходя из максимально приемлемого для исследователя размера ошибки выборки.
Все дальнейшие формулы и расчеты относятся только к простой случайной выборке!
Формулы для других типов выборки отличаются.
Объем выборки рассчитывается по следующим формулам
1) если объем выборки значительно меньше генеральной совокупности:
(в данной формуле не используется показатель объема генеральной совокупности N)
2) если объем выборки сопоставим с объемом генеральной совокупности:
В приведенных формулах:
Z – коэффициент, зависящий от выбранного исследователем доверительного уровня. Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень. Ему соответствует значение Z = 1,96.
N – объем генеральной совокупности. Генеральная совокупность – это все люди, которые изучаются в исследовании (например, все покупатели соков и нектаров, постоянно проживающие в Москве и Московской области). Если генеральная совокупность значительно больше объема выборки (в сотни и более раз), ее размером можно пренебречь (формула 1).
p – доля респондентов с наличием исследуемого признака. Например, если 20% опрошенных заинтересованы в новом продукте, то p = 0,2.
q = 1 — p – доля респондентов, у которых исследуемый признак отсутствует. Значения p и q обычно принимаются за 0,5, поскольку точно неизвестны до проведения исследования. При этом значении размер ошибки выборки максимален. В данном калькуляторе значения p и q по умолчанию равны 0,5.
Δ– предельная ошибка выборки (для доли признака), приемлемая для исследователя. Считается, что для принятия бизнес-решений ошибка выборки не должна превышать 4%.
n – объем выборки. Объем выборки – это количество людей, которые опрашиваются в исследовании.
ПРИМЕР РАСЧЕТА ОБЪЕМА ВЫБОРКИ:
Допустим, мы хотим рассчитать объем выборки, предельная ошибка которой составит 4%. Мы принимаем доверительный уровень, равный 95%. Генеральная совокупность значительно больше выборки. Тогда объем выборки составит:
n = 1,96 * 1,96 * 0,5 * 0,5 / (0,04 * 0,04) = 600,25 ≈ 600 человек
Таким образом, если мы хотим получить результаты с предельной ошибкой 4%, нам нужно опросить 600 человек.
КАЛЬКУЛЯТОР ОШИБКИ ВЫБОРКИ ДЛЯ ДОЛИ ПРИЗНАКА
Доверительный уровень:
Объём выборки (n):
Объём генеральной совокупности (N):
(можно пропустить, если больше 100 000)
Доля признака (p):
%
РЕЗУЛЬТАТ
Зная объем выборки исследования, можно рассчитать значение ошибки выборки (или, другими словами, погрешность выборки).
Если бы в ходе исследования мы могли опросить абсолютно всех интересующих нас людей, мы могли бы быть на 100% уверены в полученном результате. Но ввиду экономической нецелесообразности сплошного опроса применяют выборочный подход, когда опрашивается только часть генеральной совокупности. Выборочный метод не гарантирует 100%-й точности измерения, но, тем не менее, вероятность ошибки может быть сведена к приемлемому минимуму.
Все дальнейшие формулы и расчеты относятся только к простой случайной выборке! Формулы для других типов выборки отличаются.
Ошибка выборки для доли признака рассчитывается по следующим формулам.
1) если объем выборки значительно меньше генеральной совокупности:
(в данной формуле не используется показатель объема генеральной совокупности N)
2) если объем выборки сопоставим с объемом генеральной совокупности:
В приведенных формулах:
Z – коэффициент, зависящий от выбранного исследователем доверительного уровня. Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень. Ему соответствует значение Z = 1,96.
N – объем генеральной совокупности. Генеральная совокупность – это все люди, которые изучаются в исследовании (например, все покупатели шоколада, постоянно проживающие в Москве). Если генеральная совокупность значительно больше объема выборки (в сотни и более раз), ее размером можно пренебречь (формула 1).
n – объем выборки. Объем выборки – это количество людей, которые опрашиваются в исследовании. Существует заблуждение, что чем больше объем генеральной совокупности, тем больше должен быть и объем выборки маркетингового исследования. Это отчасти так, когда объем выборки сопоставим с объемом генеральной совокупности. Например, при опросах организаций (B2B). Если же речь идет об исследовании жителей городов, то не важно, Москва это или Рязань – оптимальный объем выборки будет одинаков в обоих городах. Этот принцип следует из закона больших чисел и применим, только если выборка простая случайная. ВАЖНО: если предполагается сравнивать какие-то группы внутри города, например, жителей разных районов, то выборку следует рассчитывать для каждой такой группы.
p – доля респондентов с наличием исследуемого признака. Например, если 20% опрошенных заинтересованы в новом продукте, то p = 0,2.
q = 1 — p – доля респондентов, у которых исследуемый признак отсутствует. Значения p и q обычно принимаются за 0,5, поскольку точно неизвестны до проведения исследования. При этом значении размер ошибки выборки максимален.
Δ– предельная ошибка выборки.
Таким образом, зная объем выборки исследования, мы можем заранее оценить показатель ее ошибки.
А получив значение p, мы можем рассчитать доверительный интервал для доли признака: (p — ∆; p + ∆)
ПРИМЕР РАСЧЕТА ОШИБКИ ВЫБОРКИ ДЛЯ ДОЛИ ПРИЗНАКА:
Например, в ходе исследования были опрошены 1000 человек (n=1000). 20% из них заинтересовались новым продуктом (p=0,2). Рассчитаем показатель ошибки выборки по формуле 1 (выберем доверительный уровень, равный 95%):
∆ = 1,96 * КОРЕНЬ (0,2*0,8/1000) = 0,0248 = ±2,48%
Рассчитаем доверительный интервал:
(p — ∆; p + ∆) = (20% — 2,48%; 20% + 2,48%) = (17,52%; 22,48%)
Таким образом, с вероятностью 95% мы можем быть уверены, что реальная доля заинтересованных в новом продукте (среди всей генеральной совокупности) находится в пределах полученного диапазона (17,52%; 22,48%).
Если бы мы выбрали доверительный уровень, равный 99%, то для тех же значений p и n ошибка выборки была бы больше, а доверительный интервал – шире. Это логично, поскольку, если мы хотим быть более уверены в том, что наш доверительный интервал «накроет» реальное значение признака, то интервал должен быть более широким.
КАЛЬКУЛЯТОР ОШИБКИ ВЫБОРКИ ДЛЯ СРЕДНЕГО ЗНАЧЕНИЯ
Доверительный уровень:
Объём выборки (n):
Объём генеральной совокупности (N):
(можно пропустить, если больше 100 000)
Среднее значение (x̄):
Стандартное отклонение (s):
РЕЗУЛЬТАТ
Зная объем выборки исследования, можно рассчитать значение ошибки выборки (или, другими словами, погрешность выборки).
Если бы в ходе исследования мы могли опросить абсолютно всех интересующих нас людей, мы могли бы быть на 100% уверены в полученном результате. Но ввиду экономической нецелесообразности сплошного опроса применяют выборочный подход, когда опрашивается только часть генеральной совокупности. Выборочный метод не гарантирует 100%-й точности измерения, но, тем не менее, вероятность ошибки может быть сведена к приемлемому минимуму.
Все дальнейшие формулы и расчеты относятся только к простой случайной выборке! Формулы для других типов выборки отличаются.
Ошибка выборки для среднего значения рассчитывается по следующим формулам.
1) если объем выборки значительно меньше генеральной совокупности:
(в данной формуле не используется показатель объема генеральной совокупности N)
2) если объем выборки сопоставим с объемом генеральной совокупности:
В приведенных формулах:
Z – коэффициент, зависящий от выбранного исследователем доверительного уровня. Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень. Ему соответствует значение Z = 1,96
N – объем генеральной совокупности. Генеральная совокупность – это все люди, которые изучаются в исследовании (например, все покупатели мороженого, постоянно проживающие в Москве). Если генеральная совокупность значительно больше объема выборки (в сотни и более раз), ее размером можно пренебречь (формула 1).
n – объем выборки. Объем выборки – это количество людей, которые опрашиваются в исследовании. Существует заблуждение, что чем больше объем генеральной совокупности, тем больше должен быть и объем выборки маркетингового исследования. Это отчасти так, когда объем выборки сопоставим с объемом генеральной совокупности. Например, при опросах организаций (B2B). Если же речь идет об исследовании жителей городов, то не важно, Москва это или Рязань – оптимальный объем выборки будет одинаков в обоих городах. Этот принцип следует из закона больших чисел и применим, только если выборка простая случайная. ВАЖНО: если предполагается сравнивать какие-то группы внутри города, например, жителей разных районов, то выборку следует рассчитывать для каждой такой группы.
s — выборочное стандартное отклонение измеряемого показателя. В идеале на месте этого аргумента должно быть стандартное отклонение показателя в генеральной совокупности (σ), но так как обычно оно неизвестно, используется выборочное стандартное отклонение, рассчитываемое по следующей формуле:
где, x ̅ – среднее арифметическое показателя, xi– значение i-го показателя, n – объем выборки
Δ– предельная ошибка выборки.
Зная среднее значение показателя x ̅ и ошибку ∆, мы можем рассчитать доверительный интервал для среднего значения:(x ̅ — ∆; x ̅ + ∆)
ПРИМЕР РАСЧЕТА ОШИБКИ ВЫБОРКИ ДЛЯ СРЕДНЕГО ЗНАЧЕНИЯ:
Например, в ходе исследования были опрошены 1000 человек (n=1000). Каждого из них попросили указать их примерную среднюю сумму покупки (средний чек) в известной сети магазинов. Среднее арифметическое всех ответов составило 500 руб. (x ̅=500), а стандартное отклонение составило 120 руб. (s=120). Рассчитаем показатель ошибки выборки по формуле 1 (выберем доверительный уровень, равный 95%):
∆ = 1,96 * 120 / КОРЕНЬ (1000) = 7,44
Рассчитаем доверительный интервал:
(x ̅ — ∆; x ̅ + ∆) = (500 – 7,44; 500 + 7,44) = (492,56; 507,44)
Таким образом, с вероятностью 95% мы можем быть уверены, что значение среднего чека по всей генеральной совокупности находится в границах полученного диапазона: от 492,56 руб. до 507,44 руб.
КАЛЬКУЛЯТОР ЗНАЧИМОСТИ РАЗЛИЧИЙ ДОЛЕЙ
Доверительный уровень:
Измерение 1 | Измерение 2 | |
Доля признака (p): | % | % |
Объём выборки (n): |
РЕЗУЛЬТАТ
Если в прошлогоднем исследовании вашу марку вспомнили 10% респондентов, а в исследовании текущего года – 15%, не спешите открывать шампанское, пока не воспользуетесь нашим онлайн-калькулятором для оценки статистической значимости различий.
Сравнивая два разных значения, полученные на двух независимых выборках, исследователь должен убедиться, что различия статистически значимы, прежде чем делать выводы.
Как известно, выборочные исследования не обеспечивают 100%-й точности измерения (для этого пришлось бы опрашивать всю целевую аудиторию поголовно, что слишком дорого). Тем не менее, благодаря методам математической статистики, мы можем оценить точность результатов любого количественного исследования и учесть ее в выводах.
В приведенном здесь калькуляторе используется двухвыборочный z-тест для долей. Для его применения должны соблюдаться следующие условия:
- Обе выборки – простые случайные
- Выборки независимы (между значениями двух выборок нет закономерной связи)
- Генеральные совокупности значительно больше выборок
- Произведения n*p и n*(1-p), где n=размер выборки а p=доля признака, – не меньше 5.
В калькуляторе используются следующие вводные данные:
Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень.
Доля признака (p) – доля респондентов с наличием исследуемого признака. Например, если 20% опрошенных заинтересованы в новом продукте, то p = 0,2.
Объем выборки (n) – это количество людей, которые опрашиваются в исследовании.
Результат расчетов – вывод о статистической значимости или незначимости различий двух измерений.
КАЛЬКУЛЯТОР ЗНАЧИМОСТИ РАЗЛИЧИЙ СРЕДНИХ
Доверительный уровень:
Измерение 1 | Измерение 2 | |
Среднее значение (x̄): | ||
Стандартное отклонение (s): | ||
Объём выборки (n): |
РЕЗУЛЬТАТ
Допустим, выборочный опрос посетителей двух разных ТРЦ показал, что средний чек в одном из них равен 1000 рублей, а в другом – 1200 рублей. Следует ли отсюда вывод, что суммы среднего чека в двух этих ТРЦ действительно отличаются?
Сравнивая два разных значения, полученные на двух независимых выборках, исследователь должен убедиться, что различия статистически значимы, прежде чем делать выводы.
Как известно, выборочные исследования не обеспечивают 100%-й точности измерения (для этого пришлось бы опрашивать всю целевую аудиторию поголовно, что слишком дорого). Тем не менее, благодаря методам математической статистики, мы можем оценить точность результатов любого количественного исследования и учесть ее в выводах.
В приведенном здесь калькуляторе используется двухвыборочный z-тест для средних значений. Для его применения должны соблюдаться следующие условия:
- Обе выборки – простые случайные
- Выборки независимы (между значениями двух выборок нет закономерной связи)
- Генеральные совокупности значительно больше выборок
- Распределения значений в выборках близки к нормальному распределению.
В калькуляторе используются следующие вводные данные:
Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень.
Среднее значение ( ̅x) – среднее арифметическое показателя.
Стандартное отклонение (s) – выборочное стандартное отклонение измеряемого показателя. В идеале на месте этого аргумента должно быть стандартное отклонение показателя в генеральной совокупности (σ), но так как обычно оно неизвестно, используется выборочное стандартное отклонение, рассчитываемое по следующей формуле:
где, x ̅ – среднее арифметическое показателя, xi– значение i-го показателя, n – объем выборки
Объем выборки (n) – это количество людей, которые опрашиваются в исследовании.
Результат расчетов – вывод о статистической значимости или незначимости различий двух измерений.
Вы можете подписаться на уведомления о новых материалах СканМаркет
В процессе статистического наблюдения обследованию могут подвергаться все элементы данной совокупности или некоторая часть их. В соответствии с этим наблюдения бывают сплошными или несплошными. Наиболее совершенный и научно обоснованный способ несплошного наблюдения—это выборочное наблюдение.
Оно рассчитано на то, чтобы на основе обследования некоторой части совокупности судить о всей данной совокупности.
Например, если требуется обследовать большой коллектив рабочих одной и той же профессии в отношении распределения бюджета, то из-за значительной трудоемкости всей работы практикуется выборочное обследование небольшой части этого коллектива.
Весь коллектив при этом называется Генеральной совокупностью, А выделенная для обследования часть коллектива называется Выборочной соВОкупностью.
Наиболее простой способ образования «случайной» выборки состоит в следующем.
Предварительно все члены генеральной совокупности нумеруются, и каждый номер записывается на отдельной карточке. Получившаяся пачка содержит столько же карточек, сколько членов имеет вся генеральная совокупность. Затем после тщательного перемешивания из пачки наугад берутся отдельные карточки, и ноМЕра каждой Нз Них фиксируются. Перечень номеров этих карточек указывает, какие члены генеральной совокупности случайно попали в состав выборочной совокупности. При этом существуют два принципиально различных вида случайной выборки.
1. Если каждая карточка, вынутая наугад из всей пачки, после фиксирования ее номера возвращается обратно в обЩУю пачку, то зафиксированные номера карточек определят состав Собственно случайной повторной выборки.
2. Если каждая наугад вынутая карточка не возвращаетсЯ в общую пачку, то зафиксированные номера карточек определят состав Собственно случайной бесповторной выборки.
Заметим, что случайная бесповторная выборка имеет место и тогда, когда из тщательного перемешанной пачки сразу берется нужное количество карточек.
Отношение объема выборочной совокупности П к объему генеральной совокупности N, т. Е. , называется Относительным Показателем выборки. Если в нашем примере N=20000 и П=1000, то в данном случае относительный показатель выборки Равен
.
Любое выборочное наблюдение независимо от относИТельного показателя выборки, как правило, не дает точной характеристики всей генеральной совокупности. Поэтому каждый результат, вычисленный по данным выборки, имеет некоторую погрешность. Эта погрешность называется ОшибкоЙ репрезентативности (или представИТельности). Ошибка репрезентативности показывает величину расхождения между показателями по данным выборочного обследования и соответствующими показателями всей статистической (генеральной) сОВокупности.
Особенностью выборочного наблюдения является то, что отбор единиц (объектов наблюдения) выполняется в случайном порядке. Поэтому к выборочному наблюдению применимы положения и теоремы теории вероятностей, дающие возможность определять границы возможных ошибок. Случайный характер отбора объектов обследования в выборке приводит к случайному же характеру ошибок репрЕЗентативности. Поэтому здесь можно на основе закона больших чисел, увеличивая объем выборки, регулировать пределы возможной ошибки репрезентативности и, наоборот, по заданному пределу допустимой ошибки определить необходимую численность выборки.
Ошибка репрезентативности имеет важное значение в применении результатов выборочного обследования. При вычислЕНии средней, она определяется как разность между выборочной средней и генеральной средней.
Заметим, что Генеральной средней называется среднее значение изучаемого признака в генеральной совокупности
.
Это — средняя взвешенная при наличии в совокупности ПовтоРяюЩИхся значений признака.
При отсутствии повторений применяется формула средней Арифметической
.
Аналогично Выборочной средней называется среднее значение того же признака в выборочной совокупности. Здесь соответственно применяются формулы
Или
(П — Объем выборочной совокупности).
Обозначая ошибку репрезентативности символом D, будем иметь
.
Приведем конкретный пример.
Пусть в коллективе из 20 000 рабочих СРедняя месячная Заработная плата рабочего (генеральная средняя) составляет 95,9 Руб. При выборочном обследовании 1000 рабочих средняя заработнаЯ Плата рабочего (выборочная средняя) оказалась равной 96 руб.
Отсюда ошибка репрезентативности при выборочном обследованиЯ определяется так: Руб.
Аналогично проводится вычисление ошибки репрезентативностЬ При определении доли изучаемого признака в некоторой генеральноЙ Совокупности. Если N — Численность генеральной совокупности, А М — Количество единиц, обладающих данным признаком в ее составе, то доля (Р) единиц, обладающих этим признаком в генеральной совокупности
Называется Генеральной долей.
Если для выборочной совокупности П обозначает численность выборки, Т — Количество единиц, обладающих изучаемым признаком в составе выборочной совокупности, то обозначим буквой W — Долю соответствующих единиц в составе выборки.
Это — выборочная доля .
Разность определяет ошибку репрезентативности. Пусть в рассматриваемом коллективе из N = 20000 рабочих имеется 1250 учеников, т. Е. М = 1250. Этим определяется генеральная доля учеников в объеме генеральной совокупности
В выборочной совокупности из П=1000 человек оказалось M=64 ученика. Этим определяется Вьборочная доля .
Ошибка репрезентативности, ТакИм образом, составляет
,
Или .
Нахождение параметров распределения по выборочным данным (случай нормальНОго распределения).
Если ставится вопрос об установлении закона распределения случайной величины Х по ее частным значениям , полученным в результате выборки, то возникает необходимость отыскания значений тех параметров, которые характеризуют этот закон распределения. Наиболее распространенным является нормальное распределение, которое задается плотностью вероятности
Или функцией распределения ,
Где параметр А — математическое ожидание случайной величины X, а — Ее дисперсия.
Значения случайной величины Х , являющиеся независимыми результатами опыта (в порядке выборки), можно рассматривать как значения П независимых случайных величин, имеющих равные математические ожидания А. Для таких случайных величин справедливо следствие из теоремы Чебышева в виде
(при достаточно большом П).
Это означает, что математическое ожидание случайной величины X, т. е. генеральная средняя, приближенно выражается средней арифметической (или средней взвешенной при наличии повторяющихся значений Х) ее значений, полученных в порядке выборки, т. е. .
Переходя к определению , т. е. дисперсии случайной величины Х По выборочным данным, следует отметить, что переход в формуле
к значениям по данным выборки приводит к РезульТату (вывод его мы опускаем)
.
Это — формула так называемоЙ Выборочной ДИсперсии. При больШой численности П выборки дроби и
мало отличаются МеждУ собой, и поэтому значения
и
почти совпадают. При неболь Шой же численности П эти значения дают заметное расхождение.
В соответствии с указанным результатом для и среднее Квадратическое отклонение по выборочным данным принимается в вид
.
Пример 1. Наблюдение в контрольной лаборатории за сроком годности 50 электроламп одинаковой мощности, взятых наудачу из большой партии выпущенных заводом ламп этой же мощности, привело к следующим данным о нарушении установленного гарантийНого срока горения:
Отклонение в Ч |
-30 |
-20 |
-10 |
0 |
10 |
20 |
30 |
Частоты |
5 |
6 |
8 |
10 |
9 |
8 |
4 |
Требуется по этим выборочным данным найти параметры норМального распределения, которое отражает отклонение фактическоГо Срока горения лампочек от гарантийного.
Решение. Среднее отклонение
.
Выборочная дисперсия
Таким образом, искомое нормальное распределение Характеризуется следующими значениями параметров: А » 0,4, И
. Отсюда плотность вероятности
.
Соответствующая этой плотности функция Распределения выразится так:
.
< Предыдущая | Следующая > |
---|
Как мы уже знаем, репрезентативность — свойство выборочной совокупности представлять характеристику генеральной. Если совпадения нет, говорят об ошибке репрезентативности — мере отклонения статистической структуры выборки от структуры соответствующей генеральной совокупности. Предположим, что средний ежемесячный семейный доход пенсионеров в генеральной совокупности составляет 2 тыс. руб., а в выборочной — 6 тыс. руб. Это означает, что социолог опрашивал только зажиточную часть пенсионеров, а в его исследование вкралась ошибка репрезентативности. Иными словами, ошибкой репрезентативности называется расхождение между двумя совокупностями — генеральной, на которую направлен теоретический интерес социолога и представление о свойствах которой он хочет получить в конечном итоге, и выборочной, на которую направлен практический интерес социолога, которая выступает одновременно как объект обследования и средство получения информации о генеральной совокупности.
Наряду с термином «ошибка репрезентативности» в отечественной литературе можно встретить другой — «ошибка выборки». Иногда они употребляются как синонимы, а иногда «ошибка выборки» используется вместо «ошибки репрезентативности» как количественно более точное понятие.
Ошибка выборки — отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.
На практике ошибка выборки определяется путем сравнения известных характеристик генеральной совокупности с выборочными средними. В социологии при обследованиях взрослого населения чаще всего используют данные переписей населения, текущего статистического учета, результаты предшествующих опросов. В качестве контрольных параметров обычно применяются социально-демографические признаки. Сравнение средних генеральной и выборочной совокупностей, на основе этого определение ошибки выборки и ее уменьшение называется контролированием репрезентативности. Поскольку сравнение своих и чужих данных можно сделать по завершении исследования, такой способ контроля называется апостериорным, т.е. осуществляемым после опыта.
В опросах Института Дж. Гэллапа репрезентативность контролируется по имеющимся в национальных переписях данным о распределении населения по полу, возрасту, образованию, доходу, профессии, расовой принадлежности, месту проживания, величине населенного пункта. Всероссийский центр изучения общественного мнения (ВЦИОМ) использует для подобных целей такие показатели, как пол, возраст, образование, тип поселения, семейное положение, сфера занятости, должностной статус респондента, которые заимствуются в Государственном комитете по статистике РФ. В том и другом случае генеральная совокупность известна. Ошибку выборки невозможно установить, если неизвестны значения переменной в выборочной и генеральной совокупностях.
Специалисты ВЦИОМ обеспечивают при анализе данных тщательный ремонт выборки, чтобы минимизировать отклонения, возникшие на этапе полевых работ. Особенно сильные смещения наблюдаются по параметрам пола и возраста. Объясняется это тем, что женщины и люди с высшим образованием больше времени проводят дома и легче идут на контакт с интервьюером, т.е. являются легко достижимой группой по сравнению с мужчинами и людьми «необразованными»35.
Ошибка выборки обусловливается двумя факторами: методом формирования выборки и размером выборки.
Ошибки выборки подразделяются на два типа — случайные и систематические. Случайная ошибка — это вероятность того, что выборочная средняя выйдет (или не выйдет) за пределы заданного интервала. К случайным ошибкам относят статистические погрешности, присущие самому выборочному методу. Они уменьшаются при возрастании объема выборочной совокупности.
Второй тип ошибок выборки — систематические ошибки. Если социолог решил узнать мнение всех жителей города о проводимой местными органами власти социальной политике, а опросил только тех, у кого есть телефон, то возникает предумышленное смещение выборки в пользу зажиточных слоев, т.е. систематическая ошибка.
Таким образом, систематические ошибки — результат деятельности самого исследователя. Они наиболее опасны, поскольку приводят к довольно значительным смещениям результатов исследования. Систематические ошибки считаются страшнее случайных еще и потому, что они не поддаются контролю и измерению.
Они возникают, когда, например:
- выборка не соответствует задачам исследования (социолог решил изучить только работающих пенсионеров, а опросил всех подряд);
- налицо незнание характера генеральной совокупности (социолог думал, что 70% всех пенсионеров не работает, а оказалось, что не работает только 10%);
- отбираются только «выигрышные» элементы генеральной совокупности (например, только обеспеченные пенсионеры).
Внимание! В отличие от случайных ошибок систематические ошибки при возрастании объема выборки не уменьшаются.
Обобщив все случаи, когда происходят систематические ошибки, методисты составили их реестр. Они полагают, что источником неконтролируемых перекосов в распределении выборочных наблюдений могут быть следующие факторы:
- нарушены методические и методологические правила проведения социологического исследования;
- выбраны неадекватные способы формирования выборочной совокупности, методы сбора и расчета данных;
- произошла замена требуемых единиц наблюдения другими, более доступными;
- отмечен неполный охват выборочной совокупности (недополучение анкет, неполное их заполнение, труднодоступность единиц наблюдения).
Намеренные ошибки социолог допускает редко. Чаще ошибки возникают из-за того, что социологу плохо известна структура генеральной совокупности: распределение людей по возрасту, профессии, доходам и т.д.
Систематические ошибки легче предупредить (по сравнению со случайными), но их очень трудно устранить. Предупреждать систематические ошибки, точно предвидя их источники, лучше всего заранее — в самом начале исследования.
Вот некоторые способы избежать ошибок выборки:
- каждая единица генеральной совокупности должна иметь равную вероятность попасть в выборку;
- отбор желательно производить из однородных совокупностей;
- надо знать характеристики генеральной совокупности;
- при составлении выборочной совокупности надо учитывать случайные и систематические ошибки.
Если выборочная совокупность (или просто выборка) составлена правильно, то социолог получает надежные результаты, харастеризующие всю генеральную совокупность. Если она составлена неправильно, то ошибка, возникшая на этапе составления выборки, на каждом следующем этапе проведения социологического исследования приумножается и достигает в конечном счете такой величины, которая перевешивает ценность проведенного исследования. Говорят, что от такого исследования больше вреда, нежели пользы.
Подобные ошибки могут произойти только с выборочной совокупностыо. Чтобы избежать или уменьшить вероятность ошибки, самый простой способ — увеличивать размеры выборки (в идеале до объема генеральной: когда обе совокупности совпадут, ошибка выборки вообще исчезнет). Экономически такой метод невозможен. Остается другой путь — совершенствовать математические методы составления выборки. Они то и применяются на практике. Таков первый канал проникновения в социологию математики. Второй канал — математическая обработка данных.
Особенно важной проблема ошибок становится в маркетинговых исследованиях, где используются не очень большие выборки. Обычно они составляют несколько сотен, реже — тысячу респондентов. Здесь исходным пунктом расчета выборки выступает вопрос об определении размеров выборочной совокупности. Численность выборочной совокупности зависит от двух факторов:
- стоимости сбора информации,
- стремления к определенной степени статистической достоверности результатов, которую надеется получить исследователь.
Конечно, даже не искушенные в статистике и социологии люди интуитивно понимают, что чем больше размеры выборки, т.е. чем ближе они к размерам генеральной совокупности в целом, тем более надежны и достоверны полученные данные. Однако выше мы уже говорили о практической невозможности сплошных опросов в тех случаях, когда они проводятся на объектах, численность которых превышает десятки, сотни тысяч и даже миллионы. Понятно, что стоимость сбора информации (включающая оплату тиражирования инструментария, труда анкетеров, полевых менеджеров и операторов по компьютерному вводу) зависит от той суммы, которую готов выделить заказчик, и слабо зависит от исследователей. Что же касается второго фактора, то мы остановимся на нем чуть подробнее.
Итак, чем больше величина выборки, тем меньше возможная ошибка. Хотя необходимо отметить, что при желании увеличить точность вдвое вам придется увеличить выборку не в два, а в четыре раза. Например, чтобы сделать в два раза более точной оценку данных, полученных путем опроса 400 человек, вам потребуется опросить не 800, а 1600 человек. Впрочем, вряд ли маркетинговое исследование испытывает нужду в стопроцентной точности. Если пивовару необходимо узнать, какая часть потребителей пива предпочитает именно его марку, а не сорт его конкурента, — 60% или 40%, то на его планы никак не повлияет разница между 57%, 60 или 63%.
Ошибка выборки может зависеть не только от ее величины, но и от степени различий между отдельными единицами внутри генеральной совокупности, которую мы исследуем. Например, если нам нужно узнать, какое количество пива потребляется, то мы обнаружим, что внутри нашей генеральной совокупности нормы потребления у различных людей существенно различаются (гетерогенная генеральная совокупность). В другом случае мы будем изучать потребление хлеба и установим, что у разных людей оно различается гораздо менее существенно {гомогенная генеральная совокупность). Чем больше различия (или гетерогенность) внутри генеральной совокупности, тем больше величина возможной ошибки выборки. Указанная закономерность лишь подтверждает то, что нам подсказывает простой здравый смысл. Таким образом, как справедливо утверждает В. Ядов, «численность (объем) выборки зависит от уровня однородности или разнородности изучаемых объектов. Чем более они однородны, тем меньшая численность может обеспечить статистически достоверные выводы».
Определение объема выборки зависит также от уровня доверительного интервала допустимой статистической ошибки. Здесь имеются в виду так называемые случайные ошибки, которые связаны с природой любых статистических погрешностей. В.И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5%-ной ошибки:
Это означает,что если вы, опросив, предположим, 400 человек в районном городе, где численность взрослого платежеспособного населения составляет 100 тыс. человек, выявили, что 33% опрошенных покупателей предпочитают продукцию местного мясокомбината, то с 95%-ной вероятностью можете утверждать, что постоянными покупателями этой продукции являются 33+5% (т.е. от 28 до 38%) жителей этого города.
Можно также воспользоваться расчетами института Гэллапа для оценки соотношения размеров выборки и ошибки выборки.